http://iet.metastore.ingenta.com
1887

Joint frequency and two-dimensional direction of arrival estimation for Electronic Support systems based on sub-Nyquist sampling

Joint frequency and two-dimensional direction of arrival estimation for Electronic Support systems based on sub-Nyquist sampling

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The electronic support (ES) receivers require wide instantaneous bandwidth as a result of a wide-frequency range of modern radar signals. Thus, analogue-to-digital converters (ADCs) with high sampling rates are required for digital ES receivers. One of the bottlenecks in designing such systems is the high power consumption of the back-end ADCs at high sampling rates. In this study, a system-level approach with the goal of minimising the required digitisation rate is presented by exploiting compressive sampling. Using the proposed receiver structure, the location finding of pulsed radars in wideband scenarios is studied. To fulfil the need for frequency and position finding, the proposed receiver employs a three-dimensional antenna array, followed by radio-frequency back-end and ADC blocks, inspired by the modulated wideband converter technique. Furthermore, an algorithm based on Bayesian compressed sensing, incorporating off-grid techniques, is employed to jointly estimate the azimuth and the elevation angles of incoming signals, as well as their carrier frequencies. Simulation results are provided to support the theoretical results obtained in this study. The results show that the proposed off-grid Bayesian method has a significantly lower mean square estimation error than the conventional deterministic approaches, while its average computation complexity can be reduced in multi-snapshot scenarios.

References

    1. 1)
      • 1. Neri, F.: ‘Introduction to electronic defense systems’ (Artech House, Massachusetts, USA, 2006, 2nd edn.).
    2. 2)
      • 2. Martino, A.D.: ‘Introduction to modern EW systems’ (Artech House, Massachusetts, USA, 2012).
    3. 3)
      • 3. Poisel, R.A.: ‘Electronic warfare receivers and receiving systems’ (Artech House, Massachusetts, USA, 2015).
    4. 4)
      • 4. Pace, P.E.: ‘Detecting and classifying low probability of intercept radar’ (Artech House, Massachusetts, USA, 2009).
    5. 5)
      • 5. Salari, S., Kim, I.M., Chan, F., et al: ‘Blind compressive-sensing-based electronic warfare receiver’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (4), pp. 20142030.
    6. 6)
      • 6. Plessis, W.P., Potgieter, P.F., Gouws, M., et al: ‘Initial results for compressive sensing in electronic support receiver systems’. Saudi Int. Electronics Communications and Photonics Conf., Riyadh, April 2011, pp. 16.
    7. 7)
      • 7. Cohen, D., Eldar, Y. C.: ‘Sub-Nyquist cyclostationary detection for cognitive radio’, IEEE Trans. Signal Process., 2017, 65, (11), pp. 30043019.
    8. 8)
      • 8. Candes, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 2130.
    9. 9)
      • 9. Eldar, Y.C.: ‘Sampling theory beyond bandlimited systems’ (Cambridge University Press, Cambridge, England, 2015, 1st edn.), pp. 608633.
    10. 10)
      • 10. Eldar, Y.C., Kutyniok, G.: ‘Compressed sensing theory and applications’ (Cambridge University Press, Cambridge, England, 2012, 1st edn.).
    11. 11)
      • 11. Mishali, M., Eldar, Y.C.: ‘From theory to practice: sub-Nyquist sampling of sparse wideband analog signals’, IEEE J. Sel. Top. Signal Process., 2010, 4, (2), pp. 375391.
    12. 12)
      • 12. Cohen, D., Tsiper, S., Eldar, Y.C.: ‘Analog to digital cognitive radio: sampling, detection and hardware’, IEEE Signal Process. Mag., 2018, 35, (1), pp. 137166.
    13. 13)
      • 13. Stein, S., Yair, O., Cohen, D., et al: ‘CaSCADE: compressed carrier and DOA estimation’, IEEE Trans. Signal Process., 2017, 65, (10), pp. 26452658.
    14. 14)
      • 14. Mishali, M., Eldar, Y.C.: ‘Blind multiband signal reconstruction: compressed sensing for analog signals’, IEEE Trans. Signal Process., 2009, 57, (3), pp. 9931009.
    15. 15)
      • 15. Yaghobi, M., Lexa, M., Milliioz, F., et al: ‘A low-complexity sub-Nyquist sampling system for wideband radar ESM receivers’. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 17881792.
    16. 16)
      • 16. Sreenivasa Rao, M., Mishra, C.C., Krishna Naik, K., et al: ‘discrete electronic warfare signal processing using compressed sensing based on random modulator pre-integrator’, Def. Sci. J., 2015, 65, (6), pp. 472476.
    17. 17)
      • 17. Sreenivasa Rao, M., Krishna Naik, K., Maheshwara Reddy, K.: ‘Compressed sensing: radar signal detection and parameter measurement for EW applications’, Radio Sci., 2016, 51, (9), pp. 14571469.
    18. 18)
      • 18. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    19. 19)
      • 19. Candes, E., Romberg, J.: ‘Sparsity and incoherence in compressive sampling’, Inverse Probl., 2007, 23, pp. 969985.
    20. 20)
      • 20. Yang, Z., Xie, L., Zhang, C.: ‘Off-Grid direction of arrival estimation using sparse Bayesian inference’, IEEE Trans. Signal Process., 2013, 61, (1), pp. 3843.
    21. 21)
      • 21. Chen, T., Liu, L., Pan, D.: ‘A ULA-based MWC discrete compressed sampling structure for carrier frequency and AOA estimation’, IEEE Access., 2017, 5, pp. 1415414164.
    22. 22)
      • 22. Mishra, A.K., Verster, R.S.: ‘Compressive sensing based algorithms for electronic defence’ (Springer International Publishing, Cham, Switzerland, 2017, 1st edn.), pp. 4560.
    23. 23)
      • 23. Levanon, N., Mozeson, E.: ‘Radar signals’ (John Wiley & Sons, New Jersey, USA, 2004).
    24. 24)
      • 24. Skolnik, M.I.: ‘Radar handbook’ (McGraw-Hill, New York City, USA, 2008).
    25. 25)
      • 25. Kikuchi, S., Tsuji, H., Sano, A.: ‘Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix’, IEEE Antennas Wirel. Propag. Lett., 2006, 5, (1), pp. 3540.
    26. 26)
      • 26. Van Trees, H.L.: ‘Optimum array processing’ (John Wiley & Sons, New York, NY, 2004).
    27. 27)
      • 27. Papoulis, A., Pillai, S.U.: ‘Probability, random variables and stochastic processes’ (McGraw-Hill, New York City, USA, 2002, 4th edn.).
    28. 28)
      • 28. Arjoune, Y., Kaabouch, N., El Ghazi, H., et al: ‘Compressive sensing: performance comparison of sparse recovery algorithms’. IEEE Seventh Annual Computing and Communication Workshop and Conf. (CCWC), Las Vegas, NV, USA, January 2017, pp. 17.
    29. 29)
      • 29. Tropp, J.A., Gilbert, A.C., Strauss, M.J.: ‘Simultaneous sparse approximation via greedy pursuit’. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP'05), Philadelphia, USA, March 2005.
    30. 30)
      • 30. Cotter, S.F., Rao, B.D., Engan, K., et al: ‘Sparse solution to linear inverse problems with multiple measurement vectors’, IEEE Trans. Signal Process., 2003, 53, (7), pp. 24772488.
    31. 31)
      • 31. Maliotov, D., Cetin, M., Willsky, A.S.: ‘A sparse signal reconstruction perspective for source localization with sensor array’, IEEE Trans. Signal Process., 2005, 53, (8), pp. 30103022.
    32. 32)
      • 32. Li, X., Hong, S., Han, Z., et al: ‘Bayesian compressed sensing based dynamic joint spectrum sensing and primary user localization for dynamic spectrum access’. IEEE Global Telecommunication Conf. (GLOBCOM), Kathmandu, Nepal, December 2011, pp. 15.
    33. 33)
      • 33. Basaran, M., Erkucuk, S., Cirpan, A.H.: ‘Bayesian compressive sensing for primary user detection’, IET Signal Process., 2016, 10, (5), pp. 514523.
    34. 34)
      • 34. Rocca, P., Hannan, M.A., Salucci, M., et al: ‘Single-snapshot DoA estimation in array antennas with mutual coupling through a multi-scaling BSC strategy’, IEEE Trans. Antennas Propag., 2017, 65, (6), pp. 32033213.
    35. 35)
      • 35. Wan, Q., Duan, H., Fang, J., et al: ‘Robust Bayesian compressed sensing’, arXiv: 1610.02807, 2016- arxiv.org.
    36. 36)
      • 36. Gerstoft, P., Mecklenbrauker, F., Xenaki, A.: ‘Multi snapshot sparse Bayesian learning for DOA estimation’, arXiv: 1602.09120, 2016- arxiv.org.
    37. 37)
      • 37. Ji, S., Xue, Y., Carin, L.: ‘Bayesian compressive sensing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 23462356.
    38. 38)
      • 38. Tipping, S.M.E.: ‘Sparse Bayesian learning and the relevance vector machine’, J. Mach. Learn. Res., 2001, 1, pp. 211244.
    39. 39)
      • 39. Mishali, M., Eldar, Y.C., Dounaevsky, O., et al: ‘Xampling: analog to digital at sub-Nyquist rates’, IET Circuits Devices Syst., 2011, 5, (1), pp. 820.
    40. 40)
      • 40. McLachlan, G., Krishnan, T.: ‘The EM algorithm and extensions’ (Wiley, New York, 1997).
    41. 41)
      • 41. Aravind, N.V., Abhinandan, K., Asharya, V.V., et al: ‘Comparison of OMP and SOMP in the reconstruction of compressively sensed hyperspectral images’. Int. Conf. on Communication and Signal Processing (ICCSP), Calicut, India, February 2011, pp. 188192.
    42. 42)
      • 42. Wan, Q., Duan, H., Fang, J., et al: ‘Robust Bayesian compressed sensing with outliers’, Signal Process., 2017, 140, pp. 104109.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0477
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0477
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address