access icon free Parameter state estimation for bistatic sonar systems

The use of autonomous underwater vehicles (AUVs) cooperating in a network for anti-submarine warfare surveillance operations is of topical interest. Each AUV has to localise and track targets (submarines) robustly and precisely. This can be realised by a bistatic sonar configuration. The precise knowledge of the bistatic system parameters is mandatory for target tracking. These are in particular the positions of the acoustic sources, transmission times, and the position and heading of the AUV sonar sensor. However, these parameters often are not precisely known, e.g. for non-cooperative acoustic sources or due to navigation uncertainties of the AUV. Therefore, the authors consider the inverse problem, i.e. they estimate the bistatic system parameters by exploiting sonar echoes from known stationary ‘targets’ like wrecks or small islands. Their implementation of the estimation method is based on the multihypothesis tracking technique. Results are discussed for two applications: The first one is estimation of the parameters of a non-cooperative source. The second application focuses on the estimation of the receiver parameters; in particular they show that their approach can be used to increase robustness of AUV navigation. Their algorithms are tested with simulated and real data recorded by the Centre for Maritime Research and Experimentation.

Inspec keywords: underwater vehicles; target tracking; remotely operated vehicles; sonar tracking; sonar; autonomous underwater vehicles

Other keywords: sonar echoes; AUV sonar sensor; bistatic sonar systems; precise knowledge; estimation method; heading values; parameter state estimation; bistatic sonar configuration; autonomous underwater vehicles; bistatic system parameters; transmission times; receiver parameters; position; known stationary targets; target tracking; acoustic sources; multihypothesis tracking technique; particular the positions; anti-submarine warfare surveillance operations; AUV navigation

Subjects: Sonar and acoustic radar; Telerobotics; Oceanographic and hydrological techniques and equipment; Marine system control; Mobile robots; Signal processing and detection

References

    1. 1)
      • 17. Calazan, R., Rodríguez, O.: ‘Three-dimensional eigenray search for a vertical line array’. 4th Underwater Acoustics Conf. Exhibition (UACE2017), Skiathos Island, Greece, 2017.
    2. 2)
      • 2. Scott, R.: ‘GLINT in the eye: NURC explores novel autonomous concepts for future ASW’, Jane's Int. Def. Rev., January2010, 43, pp. 3435.
    3. 3)
      • 21. Jalving, B., Bovio, E., Gade, K.: ‘Integrated inertial navigation systems for AUV for REA applications’. SACLANTCEN Proc. MREP 2003, NATO SACLANT Undersea Research Centre, La Spezia, Italy, May 2003.
    4. 4)
      • 4. Hughes, D., Kemna, S., Hamilton, M., et al: ‘Sensible behaviour strategies for AUVs in ASW scenarios’. Proc. Oceans 2010, Sydney, Australia, May 2010.
    5. 5)
      • 18. Groves, P.D.: ‘Principles of GNSS, inertial, and multisensor integrated navigation Systems’ (Artech House, London, 2008).
    6. 6)
      • 9. Daun, M., Ehlers, F.: ‘Tracking algorithms for multistatic sonar systems’, EURASIP J. Adv. Signal Process., 2010, pp. 128, doi: 10.1155/2010/461538.
    7. 7)
      • 6. LePage, K., Hamilton, M., Kemna, S.: ‘Autonomous underwater vehicles for active multistatic undersea surveillance’. Proc. 4th Underwater Acoustic Conf. 2011 (UAM), Kos, Greece, June 2011.
    8. 8)
      • 28. Daun, M., Ehlers, F.: ‘Tracking algorithms for bistatic sonar systems’. Proc. Informatik 2009, Workshop Sensor Data Fusion: Trends, Solutions, Applications, Lübeck, Germany, October 2009, pp. 22832295.
    9. 9)
      • 27. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: ‘On the complexity and consistency of UKF-based SLAM’. Proc. 2009 IEEE Int. Conf. Robotics and Automation, ICRA'09, Kobe, Japan, 2009, pp. 44014408.
    10. 10)
      • 11. La Cour, B.: ‘Bayesian sensor registration for multistatic active sonar’. Oceans 2005 – Europe, vol. 1, 2005, pp. 131136.
    11. 11)
      • 12. Lee, D., Jung, T.J., Lee, K.K., et al: ‘Source ranging with an underwater geographic point in non-cooperative bistatic sonar’, Meas. Sci. Technol., 2013, 25, pp. 18.
    12. 12)
      • 14. Forouher, D., Hartmann, J., Litza, M., et al: ‘Sonar-based fastSLAM in an underwater environment using walls as features’. 2011 15th Int. Conf. Advanced Robotics (ICAR), Tallinn, Estonia, June 2011, pp. 588593.
    13. 13)
      • 13. Mallios, A., Ridao, P., Ribas, D., et al: ‘EKF-SLAM for AUV navigation under probabilistic sonar scan-matching’. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Taipei, Taiwan, October 2010, pp. 44044411.
    14. 14)
      • 15. Ehlers, F.: ‘Sonar under water sources parameters estimation method, involves estimating several or all other echo signals of reverberation from all other directions under auxiliary condition of physically consistent Doppler shift’, March 2007. DE Patent 102,004,057,548.
    15. 15)
      • 10. Blanc-Benon, P., Bienvenu, G.: ‘Passive target motion analysis using multipath differential time-delay and differential Doppler shifts’. ICASSP-95: Proc. 1995 Int. Conf. Acoustics, Speech, and Signal Processing, Detroit, Michigan, USA, vol. 5, 1995, pp. 31393142.
    16. 16)
      • 7. Ferri, G., Munafo, A., Tesei, A., et al: ‘Cooperative robotic networks for underwater surveillance: an overview’, IET Radar Sonar Navig. (Special Issue on Sonar Multi-Sensor Applications and Techniques), 2017, 11, (12), pp. 17401761.
    17. 17)
      • 3. Martin-Lauzer, F.R., Stevenson, M., Jespers, S., et al: ‘Coalition of ASW sensors’. Proc. Defence Technology Asia, Singapore, March 2007.
    18. 18)
      • 23. Koch, W.: ‘Tracking and sensor data fusion, methodological framework and selected applications’ (Springer Verlag, Berlin, Heidelberg, 2014).
    19. 19)
      • 26. Denham, W., Pines, S.: ‘Sequential estimation when measurement function nonlinearity is comparable to measurement error’, AIAA J.., 1966, 4, (4), pp. 10711076.
    20. 20)
      • 24. Daun, M., Nickel, U., Koch, W.: ‘Tracking in multistatic passive radar systems using DAB/DVB-T illumination’, Signal Process., 2011, 92, (6), pp. 13651386.
    21. 21)
      • 32. Broetje, M., Pikora, K.: ‘Parameter estimation for multistatic active sonar using extended fixed points’. Proc. 18th Int. Conf. Information Fusion (FUSION), Washington D.C., USA, July 2015, pp. 351358.
    22. 22)
      • 16. Meyer, F., Braca, P., Willett, P., et al: ‘A scalable algorithm for tracking an unknown number of targets using multiple sensors’, IEEE Trans. Signal Process., 2017, 65, (13), pp. 34783493.
    23. 23)
      • 25. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    24. 24)
      • 20. Bovio, E., Cecchi, D., Baralli, F.: ‘Autonomous underwater vehicles for scientific and naval operations’, Annu. Rev. Control, 2006, 30, pp. 117130.
    25. 25)
      • 8. Coraluppi, S.: ‘Multistatic sonar localization’, IEEE J. Ocean. Eng., 2006, 31, (4), October, pp. 964974.
    26. 26)
      • 31. Michaelis, M., Broetje, M., Ehlers, F.: ‘Case study: limitations of parameter estimation for non-cooperative multistatic active sonar by association ambiguities’. Proc. Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, October 2014, pp. 16.
    27. 27)
      • 1. Grimmett, D., Coraluppi, S., La Cour, B., et al: ‘MSTWG multistatic tracker evaluation using simulated scenario data sets’. Proc. 11th Int. Conf. Information Fusion, Cologne, Germany, July 2008, pp. 18.
    28. 28)
      • 19. Titterton, D., Weston, J.: ‘Strapdown Inertial Navigation Technology, IEE Radar’, Sonar Navigation and Avionics Series 17, 2004.
    29. 29)
      • 22. Wendel, J.: ‘Integrierte Navigationssysteme’ (Oldenbourg Verlag, Munich, 2007).
    30. 30)
      • 29. Trees, H.L.V., Bell, K.L.: ‘Bayesian bounds for parameter estimation and nonlinear filtering/Tracking’ (Wiley-Interscience, New York, 2007).
    31. 31)
      • 30. Michaelis, M., Brötje, M., Ehlers, F.: ‘Parameter estimation for non-cooperative multistatic sonar’. Proc. UA2014 – 2nd Int. Conf. Exhibition on Underwater Acoustics, Rhodes, Greece, 2014.
    32. 32)
      • 5. Hamilton, M., Kemna, S., Hughes, D.: ‘Antisubmarine warfare applications for autonomous underwater vehicles: the GLINT09 sea trial results’, J. Field Robot., 2010, 27, (6), pp. 890902.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0426
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading