http://iet.metastore.ingenta.com
1887

Parameter state estimation for bistatic sonar systems

Parameter state estimation for bistatic sonar systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The use of autonomous underwater vehicles (AUVs) cooperating in a network for anti-submarine warfare surveillance operations is of topical interest. Each AUV has to localise and track targets (submarines) robustly and precisely. This can be realised by a bistatic sonar configuration. The precise knowledge of the bistatic system parameters is mandatory for target tracking. These are in particular the positions of the acoustic sources, transmission times, and the position and heading of the AUV sonar sensor. However, these parameters often are not precisely known, e.g. for non-cooperative acoustic sources or due to navigation uncertainties of the AUV. Therefore, the authors consider the inverse problem, i.e. they estimate the bistatic system parameters by exploiting sonar echoes from known stationary ‘targets’ like wrecks or small islands. Their implementation of the estimation method is based on the multihypothesis tracking technique. Results are discussed for two applications: The first one is estimation of the parameters of a non-cooperative source. The second application focuses on the estimation of the receiver parameters; in particular they show that their approach can be used to increase robustness of AUV navigation. Their algorithms are tested with simulated and real data recorded by the Centre for Maritime Research and Experimentation.

References

    1. 1)
      • 1. Grimmett, D., Coraluppi, S., La Cour, B., et al: ‘MSTWG multistatic tracker evaluation using simulated scenario data sets’. Proc. 11th Int. Conf. Information Fusion, Cologne, Germany, July 2008, pp. 18.
    2. 2)
      • 2. Scott, R.: ‘GLINT in the eye: NURC explores novel autonomous concepts for future ASW’, Jane's Int. Def. Rev., January2010, 43, pp. 3435.
    3. 3)
      • 3. Martin-Lauzer, F.R., Stevenson, M., Jespers, S., et al: ‘Coalition of ASW sensors’. Proc. Defence Technology Asia, Singapore, March 2007.
    4. 4)
      • 4. Hughes, D., Kemna, S., Hamilton, M., et al: ‘Sensible behaviour strategies for AUVs in ASW scenarios’. Proc. Oceans 2010, Sydney, Australia, May 2010.
    5. 5)
      • 5. Hamilton, M., Kemna, S., Hughes, D.: ‘Antisubmarine warfare applications for autonomous underwater vehicles: the GLINT09 sea trial results’, J. Field Robot., 2010, 27, (6), pp. 890902.
    6. 6)
      • 6. LePage, K., Hamilton, M., Kemna, S.: ‘Autonomous underwater vehicles for active multistatic undersea surveillance’. Proc. 4th Underwater Acoustic Conf. 2011 (UAM), Kos, Greece, June 2011.
    7. 7)
      • 7. Ferri, G., Munafo, A., Tesei, A., et al: ‘Cooperative robotic networks for underwater surveillance: an overview’, IET Radar Sonar Navig. (Special Issue on Sonar Multi-Sensor Applications and Techniques), 2017, 11, (12), pp. 17401761.
    8. 8)
      • 8. Coraluppi, S.: ‘Multistatic sonar localization’, IEEE J. Ocean. Eng., 2006, 31, (4), October, pp. 964974.
    9. 9)
      • 9. Daun, M., Ehlers, F.: ‘Tracking algorithms for multistatic sonar systems’, EURASIP J. Adv. Signal Process., 2010, pp. 128, doi: 10.1155/2010/461538.
    10. 10)
      • 10. Blanc-Benon, P., Bienvenu, G.: ‘Passive target motion analysis using multipath differential time-delay and differential Doppler shifts’. ICASSP-95: Proc. 1995 Int. Conf. Acoustics, Speech, and Signal Processing, Detroit, Michigan, USA, vol. 5, 1995, pp. 31393142.
    11. 11)
      • 11. La Cour, B.: ‘Bayesian sensor registration for multistatic active sonar’. Oceans 2005 – Europe, vol. 1, 2005, pp. 131136.
    12. 12)
      • 12. Lee, D., Jung, T.J., Lee, K.K., et al: ‘Source ranging with an underwater geographic point in non-cooperative bistatic sonar’, Meas. Sci. Technol., 2013, 25, pp. 18.
    13. 13)
      • 13. Mallios, A., Ridao, P., Ribas, D., et al: ‘EKF-SLAM for AUV navigation under probabilistic sonar scan-matching’. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Taipei, Taiwan, October 2010, pp. 44044411.
    14. 14)
      • 14. Forouher, D., Hartmann, J., Litza, M., et al: ‘Sonar-based fastSLAM in an underwater environment using walls as features’. 2011 15th Int. Conf. Advanced Robotics (ICAR), Tallinn, Estonia, June 2011, pp. 588593.
    15. 15)
      • 15. Ehlers, F.: ‘Sonar under water sources parameters estimation method, involves estimating several or all other echo signals of reverberation from all other directions under auxiliary condition of physically consistent Doppler shift’, March 2007. DE Patent 102,004,057,548.
    16. 16)
      • 16. Meyer, F., Braca, P., Willett, P., et al: ‘A scalable algorithm for tracking an unknown number of targets using multiple sensors’, IEEE Trans. Signal Process., 2017, 65, (13), pp. 34783493.
    17. 17)
      • 17. Calazan, R., Rodríguez, O.: ‘Three-dimensional eigenray search for a vertical line array’. 4th Underwater Acoustics Conf. Exhibition (UACE2017), Skiathos Island, Greece, 2017.
    18. 18)
      • 18. Groves, P.D.: ‘Principles of GNSS, inertial, and multisensor integrated navigation Systems’ (Artech House, London, 2008).
    19. 19)
      • 19. Titterton, D., Weston, J.: ‘Strapdown Inertial Navigation Technology, IEE Radar’, Sonar Navigation and Avionics Series 17, 2004.
    20. 20)
      • 20. Bovio, E., Cecchi, D., Baralli, F.: ‘Autonomous underwater vehicles for scientific and naval operations’, Annu. Rev. Control, 2006, 30, pp. 117130.
    21. 21)
      • 21. Jalving, B., Bovio, E., Gade, K.: ‘Integrated inertial navigation systems for AUV for REA applications’. SACLANTCEN Proc. MREP 2003, NATO SACLANT Undersea Research Centre, La Spezia, Italy, May 2003.
    22. 22)
      • 22. Wendel, J.: ‘Integrierte Navigationssysteme’ (Oldenbourg Verlag, Munich, 2007).
    23. 23)
      • 23. Koch, W.: ‘Tracking and sensor data fusion, methodological framework and selected applications’ (Springer Verlag, Berlin, Heidelberg, 2014).
    24. 24)
      • 24. Daun, M., Nickel, U., Koch, W.: ‘Tracking in multistatic passive radar systems using DAB/DVB-T illumination’, Signal Process., 2011, 92, (6), pp. 13651386.
    25. 25)
      • 25. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    26. 26)
      • 26. Denham, W., Pines, S.: ‘Sequential estimation when measurement function nonlinearity is comparable to measurement error’, AIAA J.., 1966, 4, (4), pp. 10711076.
    27. 27)
      • 27. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: ‘On the complexity and consistency of UKF-based SLAM’. Proc. 2009 IEEE Int. Conf. Robotics and Automation, ICRA'09, Kobe, Japan, 2009, pp. 44014408.
    28. 28)
      • 28. Daun, M., Ehlers, F.: ‘Tracking algorithms for bistatic sonar systems’. Proc. Informatik 2009, Workshop Sensor Data Fusion: Trends, Solutions, Applications, Lübeck, Germany, October 2009, pp. 22832295.
    29. 29)
      • 29. Trees, H.L.V., Bell, K.L.: ‘Bayesian bounds for parameter estimation and nonlinear filtering/Tracking’ (Wiley-Interscience, New York, 2007).
    30. 30)
      • 30. Michaelis, M., Brötje, M., Ehlers, F.: ‘Parameter estimation for non-cooperative multistatic sonar’. Proc. UA2014 – 2nd Int. Conf. Exhibition on Underwater Acoustics, Rhodes, Greece, 2014.
    31. 31)
      • 31. Michaelis, M., Broetje, M., Ehlers, F.: ‘Case study: limitations of parameter estimation for non-cooperative multistatic active sonar by association ambiguities’. Proc. Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn, Germany, October 2014, pp. 16.
    32. 32)
      • 32. Broetje, M., Pikora, K.: ‘Parameter estimation for multistatic active sonar using extended fixed points’. Proc. 18th Int. Conf. Information Fusion (FUSION), Washington D.C., USA, July 2015, pp. 351358.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0426
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address