Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Range–Doppler reconstruction for frequency agile and PRF-jittering radar

Agility radar with the carrier frequency random hopping and the pulse repetition frequency (PRF) staggering from pulse to pulse achieves superior performance against the electromagnetic jamming. This novel scheme leads to the discontinuity of phase in a coherent processing interval, thus the fast Fourier transform-based method is no longer a valid way to estimate the velocity of a target. A novel sparse optimisation method based on compressed sensing is proposed for high-resolution range–Doppler reconstruction from random frequency hopping and PRF-jittering pulses. The performance of moving target detection of the proposed method for frequency agile and PRF-jittering radar is analysed by comparing it with parameters-fixed pulse Doppler radar. Both simulation and field experimental results demonstrate the effectiveness of the proposal.

References

    1. 1)
      • 15. Liu, Z., Wei, X., Li, X.: ‘Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing’, IEEE Sens. J., 2013, 13, (7), pp. 25232534.
    2. 2)
      • 21. Applebaum, L., Howard, S., Searle, S., et al: ‘Chirp sensing codes: deterministic compressed sensing measurements for fast recovery’, Appl. Comput. Harmon. Anal., 2009, 26, (2), pp. 283290.
    3. 3)
      • 3. Srinivasan, R.: ‘Robust radar detection using ensemble CFAR processing’, IEE Proc. Radar Sonar Navig., 2000, 147, (6), pp. 291297.
    4. 4)
      • 20. Cai, T., Xu, G., Zhang, J.: On recovery of sparse signals via l1 minimization’, IEEE Trans. Inf. Theory, 2009, 55, (7), pp. 33883397.
    5. 5)
      • 7. Chen, F.B., Li, R.F., Ding, L.M., et al: ‘Method against DRFM dense false target jamming based on jamming recognization’. IET Int. Radar Conf., 2015, p. 4.
    6. 6)
      • 11. Huang, T.Y., Liu, Y.M., Meng, H.D.: ‘Cognitive random stepped frequency radar with sparse recovery’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (2), pp. 858870.
    7. 7)
      • 19. Tropp, J.A., Gilbert, A.C.: ‘Signal recovery from random measurements via orthogonal matching pursuit’, IEEE Trans. Inf. Theory, 2007, 53, (12), pp. 46554666.
    8. 8)
      • 6. Almslmany, A., Wang, C.Y., Cao, Q.S.: ‘Advanced deceptive jamming model based on DRFM sub-Nyquist sampling’. 13th Int. Bhurban Conf. on Applied Sciences and Technology (IBCAST), 2016, pp. 727730..
    9. 9)
      • 14. Quan, Y.H., Li, Y.C., Wu, Y.J., et al: ‘Moving target detection for frequency agility radar by sparse reconstruction’, Rev. Sci. Instrum., 2016, 87, (9), pp. 811815.
    10. 10)
      • 22. Davenport, M.A., Wakin, M.B.: ‘Analysis of orthogonal matching pursuit using the restricted isometry property’, IEEE Trans. Inf. Theory, 2010, 56, (9), pp. 43954401.
    11. 11)
      • 4. Nitzberg, R.: ‘Analysis of the arithmetic mean CFAR normalizer for fluctuating targets’, IEEE Trans. Aerosp. Electron. Syst., 1978, AES-14, (1), pp. 4447.
    12. 12)
      • 18. Candes, E.J., Tao, T.: ‘Decoding by linear programming’, IEEE Trans. Inf. Theory, 2005, 51, (12), pp. 42034215.
    13. 13)
      • 1. Skolnik, M.I.: ‘Radar handbook’ (McGraw-Hill Press, New York, 2008, 3rd edn.), pp. 662683.
    14. 14)
      • 9. Kwak, C.M.: ‘Application of DRFM in ECM for pulse type radar’. 34th Int. Conf. on Infrared, Millimeter, and Terahertz Waves, 2009, pp. 12..
    15. 15)
      • 8. Berger, S.D.: ‘Digital radio frequency memory linear range gate stealer spectrum’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (2), pp. 725735.
    16. 16)
      • 10. Chen, C., Zheng, Y., Hu, S., et al: ‘A study of coherent technique of frequency-agile radar for antiship missile’, J. Astronaut., 2011, 32, (8), pp. 18191825.
    17. 17)
      • 12. Liu, Y., Meng, H., Li, G., et al: ‘Range-velocity estimation of multiple targets in randomized stepped-frequency radar’, Electron. Lett., 2008, 44, (17), pp. 10321034.
    18. 18)
      • 5. Pan, X.Y.: ‘Repeat jamming against LFM radars based on spectrum­divided’. IET Int. Radar Conf., 2013, pp. 17.
    19. 19)
      • 2. Pang, C.S., Shan, T., Ran, T., et al: ‘Detection of high-speed and accelerated target based on the linear frequency modulation radar’, IET Radar Sonar Navig., 2014, 8, (1), pp. 3747.
    20. 20)
      • 16. Liu, Z., Wei, X., Li, X.: ‘Decoupled ISAR imaging using RSFW based on twice compressed sensing’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (4), pp. 31953211.
    21. 21)
      • 17. Donoho, D., Elad, L.M., Temlyakov, V.N.: ‘Stable recovery of sparse over complete representations in the presence of noise’, IEEE Trans. Inf. Theory, 2006, 52, (1), pp. 618.
    22. 22)
      • 13. Li, H.T., Wang, C., Wang, Y., et al: ‘High resolution range profile of compressive sensing radar with low computational complexity’, IET Radar Sonar Navig., 2015, 9, (8), pp. 984990.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0421
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0421
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address