Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free ISAR imaging and cross-range scaling of high-speed manoeuvring target with complex motion via compressive sensing

For targets with extreme manoeuvres, inverse synthetic aperture radar (ISAR) imaging suffers from translational motion (TM), which is modelled as a one-dimensional (1D) phase error, and non-uniform rotational motion (RM), which is a multidimensional (MD) phase error that causes severe blurring in ISAR images. Full-aperture data collection is often unachievable because of interference with other radar activities, resulting in sparse-aperture (SA) data. In this study, the authors present a new framework for SA-ISAR imaging and cross-range scaling for manoeuvring targets based on compressive sensing. Instead of solving conventional optimisation problems constrained by a sparsity of signals, the proposed method utilises the sensing-matrix estimation technique for ISAR image reconstruction using parametric signal-model reconstruction. To do this, it looks for basis functions that best represent the behaviour of a sensing-dictionary matrix comprising the observed SA data. The sensing-matrix reconstruction is based on a modified orthogonal matching pursuit-type basis function-searching scheme. Finally, they generate a well-focused and scaled ISAR image from the recovered complete ISAR signal using the conventional Fourier transform after the removal of signals corresponding to 1D TM and MD RM phase errors. They utilise both simulated and real measured datasets to confirm the effectiveness of proposed method.

References

    1. 1)
      • 10. Li, Y., Wu, R., Xing, M., et al: ‘Inverse synthetic aperture radar imaging of ship target with complex motion’, IEE Proc., Radar Sonar Navig., 2008, 2, (6), pp. 395403.
    2. 2)
      • 19. Fu, N., Cao, L., Peng, X.: ‘A modified orthogonal matching algorithm using correlation coefficient for compressed sensing’. Proc. IEEE Instrumentation Measurement Technology Conf., Binjiang, China, May 2011, pp. 15.
    3. 3)
      • 7. Munoz-Ferreras, J.M., Perez-Martnez, F., Datcu, M.: ‘Generalisation of inverse synthetic aperture radar autofocusing methods based on the minimization of the Renyi entropy’, IET Radar Sonar Navig., 2010, 4, (4), pp. 586594.
    4. 4)
      • 3. Wang, J., Kasilingam, D.: ‘Global range alignment for ISAR’, IEEE Trans. Aerosp. Electron. Syst., 2003, 39, (1), pp. 351357.
    5. 5)
      • 22. Applebaum, L., Howard, S., Searle, S., et al: ‘Deterministic compressed sensing measurements for fast recovery’, Appl. Comput. Harmon. Anal.., 2009, 26, (2), pp. 283290.
    6. 6)
      • 14. Donoho, D.L.: ‘Compressive sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306.
    7. 7)
      • 5. Werness, S.A.S., Carrara, W.G., Joyce, L.S., et al: ‘Moving target imaging algorithm for SAR data’, IEEE Trans. Aerosp. Electron. Syst., 1990, 26, (11), pp. 5767.
    8. 8)
      • 17. Du, X., Duan, C., Hu, W.: ‘Sparse representation based autofocusing technique for ISAR images’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (3), pp. 18261835.
    9. 9)
      • 8. Zheng, J., Su, T., Zhu, W., et al: ‘ISAR imaging of non-uniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (9), pp. 47274740.
    10. 10)
      • 16. Qiu, W., Zhao, H., Zhou, J., et al: ‘High-resolution fully polarimetric ISAR imaging based on compressive sensing’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (10), pp. 61196131.
    11. 11)
      • 18. Huang, D.R., Zhang, L., Xing, M.D., et al: ‘Sparse aperture inverse synthetic aperture radar imaging of maneuvering targets with compensation of migration through range cells’, IET Radar Sonar Navig., 2014, 8, (9), pp. 11641176.
    12. 12)
      • 20. Fan, F., Fang, S., Wang, Y.: ‘Compressive sensing ultra-wideband channel estimation using Hadamard measurement matrix’. Sixth Int. Conf. Wireless, Mobile and Multi-Media (ICWMMN 2015), 2015, pp. 110114.
    13. 13)
      • 13. Prodi, F.: ‘ISAR cross-range scaling using a correlation based functional’. Proc. IEEE RADAR, 2008, pp. 16.
    14. 14)
      • 15. Elad, M.: ‘Sparse and redundant representations’ (Springer, Springer-Verlag, Germany, 2010, 1st edn.).
    15. 15)
      • 6. Wang, J., Liu, X., Zhou, Z.: ‘Minimum-entropy phase adjustment for ISAR’, IEE Proc., Radar Sonar Navig., 2002, 151, (4), pp. 203209.
    16. 16)
      • 1. Ozdemir, C.: ‘Inverse synthetic aperture radar imaging with MATLAB algorithms’ (Wiley, New York, 2012, 1st edn.).
    17. 17)
      • 21. Rudelson, M., Vershynin, R.: ‘Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements’. Proc. IEEE Annual Conf. Information Science System, 2006, pp. 207212.
    18. 18)
      • 4. Kang, M.S., Bae, J.H., Lee, S.H., et al: ‘Efficient ISAR autofocus via minimization of Tsallis entropy’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (6), pp. 29502960.
    19. 19)
      • 11. Kang, M.S., Bae, J.H., Kang, B.S., et al: ‘ISAR cross-range scaling using iterative processing via principal component analysis and bisection algorithm’, IEEE Trans. Signal. Process., 2016, 64, (15), pp. 39093918.
    20. 20)
      • 2. Chen, V.C., Martorella, M.: ‘Inverse synthetic aperture radar imaging: principle, algorithm, and applications’ (SciTech, Edison, NJ, 2014, 1st edn)..
    21. 21)
      • 9. Munoz-Ferreras, J.M., Perez-Martnez, F.: ‘Uniform rotational motion compensation for inverse synthetic aperture radar with non-cooperative targets’, IET Radar Sonar Navig., 2008, 2, (1), pp. 2534.
    22. 22)
      • 12. Peng, S.B., Xu, J., Peng, Y.N., et al: ‘Inverse synthetic aperture radar rotation velocity estimation based on phase slope difference of two prominent scatterers’, IET Radar Sonar Navig., 2011, 5, (9), pp. 10021009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0286
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0286
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address