access icon free Polarimetric detection and range estimation for a point-like target in non-Gaussian clutter

In this study, a method is presented to deal with the problem of polarimetric detection of a point-like target with energy spillover in non-Gaussian clutter. Consecutive range samples are employed to enhance the detection and range estimation performances. Within the framework of the generalised likelihood ratio test, the decision statistic of the proposed polarimetric detector involves the textures and the covariance structure of the clutter, the target return, and the residual delay. Suitable estimates of these parameters are plugged into the decision statistic. Simulations show that, the proposed detector achieves a considerable performance improvement over the polarimetric adaptive detectors that ignore either the non-Gaussian clutter or the spillover, in terms of both the probability of detection and the root mean squared error of range estimation.

Inspec keywords: estimation theory; decision theory; object detection; parameter estimation; covariance analysis; radar polarimetry; mean square error methods; radar clutter; Gaussian processes; statistical distributions; radar detection

Other keywords: root mean squared error; probability; parameter estimation; generalised likelihood ratio test; polarimetric adaptive detection problem; range estimation; covariance structure; decision statistics; point-like target estimation; nonGaussian clutter; polarimetric radar detector; clutter

Subjects: Game theory; Signal detection; Radar equipment, systems and applications; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 11. Lombardo, P., Pastina, D., Bucciarelli, T.: ‘Adaptive polarimetric target detection with coherent radar part II: detection against non-Gaussian background’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (4), pp. 12071220.
    2. 2)
      • 9. Lei, S., Zhao, Z., Nie, Z., et al: ‘A CFAR adaptive subspace detector based on a single observation in system-dependent clutter background’, IEEE Trans. Signal Process., 2014, 62, (20), pp. 52605269.
    3. 3)
      • 13. Cui, G., Kong, L., Yang, X.: ‘GLRT-based detection algorithm for polarimetric MIMO radar against SIRV clutter’, Circuits Syst. Signal Process., 2012, 31, pp. 10331048.
    4. 4)
      • 7. Liu, J., Zhang, Z., Yang, Y.: ‘Performance enhancement of subspace detection with a diversely polarized antenna’, IEEE Signal Process. Lett., 2012, 19, (1), pp. 47.
    5. 5)
      • 15. Novak, L., Sechtin, M., Cardullo, M.: ‘Studies of target detection algorithms that use polarimetric radar data’, IEEE Trans. Aerosp. Electron. Syst., 1989, 25, (2), pp. 150165.
    6. 6)
      • 12. De Maio, A., Alfano, G.: ‘Polarimetric adaptive detection in non-Gaussian noise’, Signal Process., 2003, 83, (2), pp. 297306.
    7. 7)
      • 14. Hao, C., Gazor, S., Ma, X., et al: ‘Polarimetric detection and range estimation of a point-like target’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (2), pp. 603616.
    8. 8)
      • 8. Liu, W., Xie, W., Liu, J., et al: ‘Adaptive double subspace signal detection in Gaussian background-part I: homogeneous environments’, IEEE Trans. Signal Process., 2014, 62, (9), pp. 23452357.
    9. 9)
      • 5. Hurtado, M., Nehorai, A.: ‘Polarimetric detection of targets in heavy inhomogeneous clutter’, IEEE Trans. Signal Process., 2008, 56, (4), pp. 13491361.
    10. 10)
      • 2. Pastina, D., Lombardo, P., Bucciarelli, T.: ‘Adaptive polarimetric target detection with coherent radar part I: detection against Gaussian background’, IEEE Trans. Aerosp. Electron. Syst., 2001, 37, (4), pp. 11941206.
    11. 11)
      • 1. Park, H., Li, J., Wang, H.: ‘Polarization-space-time domain generalized likelihood ratio detection of radar targets’, Signal Process., 1995, 41, (2), pp. 153164.
    12. 12)
      • 10. Liu, J., Liu, W., Chen, B., et al: ‘Modified Rao test for multichannel adaptive signal detection’, IEEE Trans. Signal Process., 2016, 64, (3), pp. 714725.
    13. 13)
      • 4. Park, H., Wang, H.: ‘Adaptive polarization-space-time domain radar target detection in inhomogeneous clutter environments’, IEE Proc. Radar Sonar Navig., 2006, 153, (1), pp. 3543.
    14. 14)
      • 3. De Maio, A, ., , Ricci, G.: ‘A polarimetric adaptive matched filter’, Signal Process., 2001, 81, (12), pp. 25832589.
    15. 15)
      • 6. Liu, J., Zhang, Z., Yang, Y., et al: ‘A CFAR adaptive subspace detector for first-order or second-order Gaussian signals based on a single observation’, IEEE Trans. Signal Process., 2011, 59, (11), pp. 51265140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0271
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0271
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading