Your browser does not support JavaScript!

Simultaneous motion tracking and localisation of a person based on the integration of multiple IMUs and depth camera

Simultaneous motion tracking and localisation of a person based on the integration of multiple IMUs and depth camera

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To overcome the limitations of the conventional motion tracking and localisation methods: environmental constraints of the infra-based approaches and long-term inaccuracy of the wearable sensor-based approaches, an algorithm for simultaneous motion tracking and localisation (SMaL) of a person, namely multiple inertial measurement unit (IMU)-based SMaL (MIbS), is proposed. A filtering method for the multiple IMUs/depth camera integration (MDI) is also proposed to add long-term localisation accuracy to the MIbS. The performance of the proposed MIbS and MDI is verified experimentally. The experimental results show that the proposed MIbS can track the motion of the person with the wearable sensor system accurately, and can localise the person on the local coordinate frame of the testbed. The encouraging fact is that the localisation errors caused by the MIbS grow slowly with time. Also, the growing localisation errors can be compensated by the MDI.


    1. 1)
      • 15. Tao, D., Guo, Y., Song, M., et al: ‘Person re-identification by dual-regularized KISS learning’, IEEE Trans. Image Process., 2016, 25, (6), pp. 27262738.
    2. 2)
      • 1. Kaplan, E.D.: ‘Understanding GPS principles and applications’ (Artech House, Inc., Norwood, MA, 1996).
    3. 3)
      • 21. Pons-Moll, G., Baak, A., Helten, T., et al: ‘Multisensor-fusion for 3D full-body human motion capture’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2010.
    4. 4)
      • 7. Lee, M.S., Ju, H., Song, J.W., et al: ‘Kinematic model-based pedestrian dead reckoning for heading correction and lower body motion tracking’, Sensors, 2015, 15, (11), pp. 2808828098.
    5. 5)
      • 16. Tao, D., Cheng, J., Gao, X., et al: ‘Robust sparse coding for mobile image labeling on the cloud’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (1), pp. 6272.
    6. 6)
      • 4. Hur, H., Ahn, H.S.: ‘A circuit design for ranging measurement using chirp spread spectrum waveform’, IEEE Sensors J., 2010, 10, (11), pp. 17741778.
    7. 7)
      • 17. Dimbwadyo-Terrer, I., Gil-Agudo, A., Segura-Fragoso, A., et al: ‘Effectiveness of the virtual reality system Toyra on upper limb function in people with tetraplegia: a pilot randomized clinical trial’, Biomed Res. Int., 2016, 2016, p. 12, Article ID 6397828,
    8. 8)
      • 26. Herrera, C.D., Kannala, J., Heikkila, J.: ‘Joint depth and color camera calibration with distortion correction’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (10), pp. 20582064.
    9. 9)
      • 8. Foxlin, E.: ‘Pedestrian tracking with shoe-mounted inertial sensors’, IEEE Comput. Graph. Appl., 2005, 25, (6), pp. 3846.
    10. 10)
      • 18. Keighobadi, J., Doostdar, P.: ‘Fuzzy sliding mode observer for vehicular attitude heading reference system’, Positioning, 2013, 4, (3), pp. 215226.
    11. 11)
      • 5. Medina, C., Segura, J.C., de la Torre, A.: ‘Ultrasound indoor positioning system based on a low-power wireless sensor network providing sub-centimeter accuracy’, Sensors, 2013, 13, (3), pp. 35013526.
    12. 12)
      • 10. Ju, H., Lee, M.S., Park, S.Y., et al: ‘A pedestrian dead-reckoning system that considers the heel-strike and toe-off phases when using a foot-mounted IMU’, Meas. Sci. Technol., 2015, 27, (1), p. 015702.
    13. 13)
      • 25. Farrell, J.A., Barth, M.: ‘The global positioning system & inertial navigation’ (McGraw-Hill, New York, NY, 1999).
    14. 14)
      • 27. Li, X.R., Jilkov, V.P.: ‘Survey of maneuvering target tracking. Part I. Dynamic models’, IEEE Trans. Wireless Commun., 2003, 39, (4), pp. 13331364.
    15. 15)
      • 24. Cho, S.Y., Park, C.G.: ‘A calibration technique for a two-axis magnetic compass in telematics devices’, ETRI J., 2005, 27, (3), pp. 280288.
    16. 16)
      • 29. Xsens Technologies B.V.: ‘MTi and MTx user manual and technical documentation’ (The Netherlands, Pantheon 6a, Enschede, 2009).
    17. 17)
      • 20. Craig, J.J.: ‘Introduction to robotics – mechanics and control’ (Pearson Prentice Hall, Upper Saddle River, NJ, 2005).
    18. 18)
      • 2. Cho, S.Y.: ‘Measurement error observer-based IMM filter for mobile node localization using WLAN RSSI measurement’, IEEE Sensors J., 2016, 16, (8), pp. 24892499.
    19. 19)
      • 14. Ren, Z., Yuan, J., Meng, J., et al: ‘Robust part-based hand gesture recognition using Kinect sensor’, IEEE Trans. Multimedia, 2013, 15, (5), pp. 11101120.
    20. 20)
      • 3. Cazzorla, A., de Angelis, G., Moschitta, A., et al: ‘A 5.6-GHz UWB position measurement system’, IEEE Trans. Instrum. Meas., 2013, 62, (3), pp. 675683.
    21. 21)
      • 22. Helten, T., Muller, M., Seidel, H.P., et al: ‘Real-time body tracking with one depth camera and inertial sensors’. Proc. of the IEEE Int'l Conf. on Computer Vision, 2013.
    22. 22)
      • 19. Madgwick, S., Harrison, A., Vaidyanathan, R.: ‘Estimation of IMU and MARG orientation using a gradient descent algorithm’. 2011 EEE Int'l Conf. on Rehabilitation Robotics, Switzerland, 2011.
    23. 23)
      • 9. Zhang, Y., Xiong, Y., Wang, Y., et al: ‘An adaptive dual-window step detection method for a waist-worn inertial navigation system’, J. Navigation, 2016, 69, (3), pp. 659672.
    24. 24)
      • 11. Cho, S.Y., Park, C.G.: ‘MEMS based pedestrian navigation system’, J. Navigation, 2006, 59, (1), pp. 135153.
    25. 25)
      • 23. von Marcard, T., Pons-Moll, G., Rosenhahn, B.: ‘Human pose estimation from video and IMUs’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (8), pp. 15331547.
    26. 26)
      • 12. Chun, S.Y., Lee, C.S., Jang, J.S.: ‘Real-time smart lighting control using human motion tracking from depth camera’, J. Real-Time Image Process., 2014, 10, (4), pp. 805820.
    27. 27)
      • 6. Tamura, Y., Takabatake, Y., Kashima, N., et al: ‘Localization system using Microsoft Kinect for indoor structures’, Plasma Fusion Res., 2012, 7, (1), p. 2406036.
    28. 28)
      • 28. Brown, R.G., Hwang, P.Y.C.: ‘Introduction to random signals and applied Kalman filtering’ (John Wiley & Sons, New York, NY, 1997).

Related content

This is a required field
Please enter a valid email address