Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Thinned knowledge-aided STAP by exploiting structural covariance matrix

The authors propose a thinned knowledge-aided space–time adaptive processing (STAP) scheme based on structural prior information of the clutter covariance matrix (CCM). Due to the low-rank Toeplitz-block-Toeplitz structure of the CCM, the CCM can be expressed by a series of basis matrices on the clutter ridge. In contrast to the expression based on the Vandermonde decomposition of the CCM, this expression can avoid searching of the clutter subspace. This expression also allows reducing the dimension of STAP and estimating the CCM with compressed data. Based on this expression, the authors derive a closed-form CCM estimate using a modified generalised least squares (GLS) method, and the proposed estimator is unbiased, consistent and more asymptotically efficient than the conventional GLS method. We derive the average signal-to-clutter-noise ratio loss (SCNRL) of the STAP filter using the proposed CCM estimates. Exploiting the prior structural information of the CCM can enhance the STAP performance with a limited sample size, and a lower compression rate can achieve more improvement. Finally, a unified framework is proposed for covariance estimation and SCNRL analysis when structural information of the CCM is exploited. Simulations also validate these results.

References

    1. 1)
      • 34. Stoica, P., Marzetta, T.: ‘Parameter estimation problems with singular information matrices’, IEEE Trans. Signal Process., 2001, 49, (1), pp. 8790.
    2. 2)
      • 20. Yang, Z., Xie, L., Stoica, P.: ‘Vandermonde decomposition of multilevel Toeplitz matrices with application to multidimensional super-resolution’, IEEE Trans. Inf. Theory, 2016, 62, (6), pp. 36853701.
    3. 3)
      • 18. Melvin, W., Showman, G.: ‘An approach to knowledge-aided covariance estimation’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (3), pp. 10211042.
    4. 4)
      • 17. Kang, B., Monga, V., Rangaswamy, M.: ‘Rank-constrained maximum likelihood estimation of structured covariance matrices’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 501516.
    5. 5)
      • 25. Liu, J., Liu, W., Liu, H., et al: ‘Average SINR calculation of a persymmetric sample matrix inversion beamformer’, IEEE Trans. Signal Process., 2016, 64, (8), pp. 21352145.
    6. 6)
      • 29. Li, H., Stoica, P., Li, J.: ‘Computationally efficient maximum likelihood estimation of structured covariance matrices’, IEEE Trans. Signal Process., 1999, 47, (5), pp. 13141323.
    7. 7)
      • 30. Pan, V.: ‘How bad are Vandermonde matrices?’, SIAM J. Matrix Anal. Appl., 2016, 37, (2), pp. 676694.
    8. 8)
      • 16. Steiner, M., Gerlach, K.: ‘Fast converging adaptive processors for a structured covariance matrix’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (4), pp. 11151126.
    9. 9)
      • 5. Moffet, A.: ‘Minimum-redundancy linear arrays’, IEEE Trans. Antennas Propag., 1968, 16, (2), pp. 172175.
    10. 10)
      • 6. Chen, C., Vaidyanathan, P.: ‘Minimum redundancy MIMO radars’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Seattle, 2008, pp. 4548.
    11. 11)
      • 11. Liu, C., Vaidyanathan, P.: ‘Coprime arrays and samplers for space-time adaptive processing’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015, pp. 23642368.
    12. 12)
      • 2. Reed, I., Mallett, J., Brennan, L.: ‘Rapid convergence rate in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1974, 10, (6), pp. 853863.
    13. 13)
      • 3. Zhang, W., He, Z., Li, J., et al: ‘A method for finding best channels in beam-space post-Doppler reduced-dimension STAP’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 254264.
    14. 14)
      • 28. Ottersten, B., Stoica, P., Roy, R.: ‘Covariance matching estimation techniques for array signal processing applications’, Digital Signal Process., 1998, 8, (3), pp. 185210.
    15. 15)
      • 27. Ginolhac, G., Forster, P., Pascal, F., et al: ‘Exploiting persymmetry for low-rank space time adaptive processing’, Signal Process., 2014, 97, pp. 242251.
    16. 16)
      • 21. Yang, Z., Li, X., Wang, H., et al: ‘On clutter sparsity analysis in space–time adaptive processing airborne radar’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (5), pp. 12141218.
    17. 17)
      • 9. Ward, J.: ‘Space-time adaptive processing with sparse antenna arrays’. Thirty-Second Asilomar Conf. Signals, Systems and Computers, vol. 2, 1998.
    18. 18)
      • 7. Pal, P., Vaidyanathan, P.: ‘Coprime sampling and the music algorithm’. Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), Sedona, January 2011, pp. 289294.
    19. 19)
      • 8. Pal, P., Vaidyanathan, P.: ‘Nested arrays: a novel approach to array processing with enhanced degrees of freedom’, IEEE Trans. Signal Process., 2010, 58, (8), pp. 41674181.
    20. 20)
      • 23. Zhang, Y., Himed, B.: ‘Space-time adaptive processing in bistatic passive radar exploiting complex Bayesian learning’. Proc. IEEE Radar Conf. (RadarCon), Cincinnati, OH, May 2014, pp. 923926.
    21. 21)
      • 12. Zhu, X., Li, J., Stoica, P.: ‘Knowledge-aided space-time adaptive processing’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 13251336.
    22. 22)
      • 22. Wang, X., Amin, M., Ahmad, F., et al: ‘Bayesian compressive sensing for DOA estimation using the difference coarray’. 2015 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Queensland, Australia, April 2015, pp. 23842388.
    23. 23)
      • 14. Carlson, J.: ‘Covariance matrix estimation errors and diagonal loading in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1988, 24, (4), pp. 397401.
    24. 24)
      • 35. Werner, K., Jansson, M., Stoica, P.: ‘On estimation of covariance matrices with Kronecker product structure’, IEEE Trans. Signal Process., 2008, 56, (2), pp. 478491.
    25. 25)
      • 10. Vouras, P.: ‘Fully Adaptive Space-Time Processing on Nested Arrays’. 2015 IEEE Radar Conf. (RadarCon), Arlington, VA, 2015, pp. 858863.
    26. 26)
      • 36. Israel, A., Greville, T.: ‘Generalized inverses: theory and applications’ (Springer, New York, NY, 2003, 2nd edn.).
    27. 27)
      • 13. Guerci, J., Baranoski, E.: ‘Knowledge-aided adaptive radar at DARPA-an overview’, IEEE Signal Process. Mag., 2006, 23, (1), pp. 4150.
    28. 28)
      • 37. Wang, Q., Zhang, L.: ‘Online updating the generalized inverse of centered matrices’. The 25th AAAI Conf. on Artificial Intelligence, San Francisco, USA, 2011, pp. 18261827.
    29. 29)
      • 38. Wang, X., Elias, A., Amin, M.: ‘Slow radar target detection in heterogeneous clutter using thinned space-time adaptive processing’, IET Radar Sonar Navig., 2015, 10, (4), pp. 726734.
    30. 30)
      • 31. Romero, D., Roberto, L., Geert, L.: ‘Compression limits for random vectors with linearly parameterized second-order statistics’, IEEE Trans. Inf. Theory, 2015, 61, (3), pp. 14101425.
    31. 31)
      • 26. Ginolhac, G., Forster, P., Pascal, F., et al: ‘Performance of two low-rank STAP filters in a heterogeneous noise’, IEEE Trans. Signal Process., 2013, 61, (1), pp. 5761.
    32. 32)
      • 4. Guerci, J., Goldstein, J., Reed, I.: ‘Optimal and adaptive reduced-rank STAP’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (2), pp. 647663.
    33. 33)
      • 33. Kay, S.: ‘Fundamentals of statistical signal processing: estimation theory’ (PTR Prentice-Hall, Englewood Cliffs, NJ, 1993).
    34. 34)
      • 15. Gierull, C., Balaji, B.: ‘Minimal sample support space-time adaptive processing with fast subspace techniques’, IEE Proc. Radar Sonar Navig., 2002, 149, (5), pp. 209220.
    35. 35)
      • 1. Ward, J.: ‘Space-time adaptive processing for airborne radar’. Technical Report ESC-TR- 94-109, Lincoln Laboratory, Massachusetts Institute of Technology, Lincoln, MA, USA, December 1994.
    36. 36)
      • 32. Linebarger, D., Sudborough, I., Tollis, I.: ‘Difference bases and sparse sensor arrays’, IEEE Trans. Inf. Theory, 1993, 39, (2), pp. 716721.
    37. 37)
      • 19. Yang, Z., Lamare, R., Li, X., et al: ‘Knowledge-aided STAP using low rank and geometry properties’, Int. J. Antennas Propag., 2013, 2014, (3), pp. 341346.
    38. 38)
      • 24. Stoica, P., Zachariah, D., Li, J.: ‘Weighted SPICE: a unifying approach for hyperparameter free sparse estimation’, Digital Signal Process., 2014, 33, (6), pp. 112.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2017.0060
Loading

Related content

content/journals/10.1049/iet-rsn.2017.0060
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address