Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust monopulse beam synthesis with sparse elements in linear and planar arrays with element failure detection

In this study, the authors present monopulse beam synthesis methods with sparse elements robust to the antenna module failure. The monopulse beam radar generates two beams (sum/difference beams) simultaneously and it requires a large number of antenna elements in antenna arrays. However, it is desirable to reduce the number of active antenna elements. Furthermore, in many practical applications, some of antenna elements may experience the module failure. Accordingly, to design beams robust to the module failure and reduce the number of active antenna elements simultaneously, the authors propose a modified reweighted L1 minimisation methods in which the Bayesian-inference-based failure probability is exploited. The authors also discuss how the proposed sparse beam synthesis method can be carried out successfully in conjunction with the array failure diagnosis based on the Bayesian compressive sensing.

References

    1. 1)
      • 16. Ji, S., Xue, Y., Carin, L.: ‘Bayesian compressive sensing’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 23462356.
    2. 2)
      • 11. Mallahzadeh, A.R., Taherzadeh, M.: ‘Element failure diagnosis in a planar microstrip antenna array by the use of neural networks’. Proc. Int. Conf. on Applications of Electromagnetism and Student Innovation Competition Awards, 2010, pp. 294298.
    3. 3)
      • 14. Iglesias, R., Ares, F., Fernandez-Delgado, M., et al: ‘Element failure detection in linear antenna arrays using case-based reasoning’, IEEE Antennas Propag. Mag., 2008, 50, (4), pp. 198204.
    4. 4)
      • 3. Kwak, S., Chun, J., Park, D., et al: ‘Asymmetric sum and difference beam pattern synthesis with a common weight vector’, IEEE Antennas Wirel. Propag. Lett, 2016, 15, pp. 14.
    5. 5)
      • 2. Morabito, A.F., Rocca, P.: ‘Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints’, IEEE Antennas Wirel. Propag. Lett, 2010, 9, pp. 623626.
    6. 6)
      • 19. Isernia, T., Bucci, O.M., Fiorentino, N.: ‘Shaped beam antenna synthesis problem: feasibility criteria and new strategies’, J Electromag Waves Appl., 1998, 12, (1), pp. 103138.
    7. 7)
      • 17. Isernia, T., Massa, A., Morabito, A.F., et al: ‘On the optimal synthesis of phase-only reconfigurable antenna arrays’. Proc. the 5th European Conf. on Antennas and Propagation (EuCAP 2011), 2011, pp. 20742077.
    8. 8)
      • 20. Grant, M., Boyd, S., CVX: ‘Matlab software for disciplined convex programming’, version 1.21. Available at http://cvxr.com/cvx; 2011.
    9. 9)
      • 6. Nai, S.E., Ser, W., Yu, Z.L., et al: ‘Beampattern synthesis for linear and planar arrays with antenna selection by convex opimization’, IEEE Trans Antennas Propag., 2010, 58, (12), pp. 39233930.
    10. 10)
      • 5. Oliveri, G., Carlin, M., Massa, A.: ‘Complex-weight sparse linear array synthesis by Bayesian compressive sampling’, IEEE Trans Antennas Propag., 2012, 60, (5), pp. 23092326.
    11. 11)
      • 13. Miao, J., Chen, B., Luo, W.: ‘An improved method of diagnosis of failed elements in arrays using genetic algorithm’. Proc. Progress In Electromagnetics Research Symp., 2014, pp. 10611064.
    12. 12)
      • 18. Bucci, O.M., Mazzarella, G., Panariello, G.: ‘Reconfigurable arrays by phase-only control’, IEEE Trans Antennas Propag., 1991, 39, (7), pp. 919925.
    13. 13)
      • 7. Reahy, R.M., Jeffs, D.B.: ‘On the design of maximally sparse beamforming arrays’, IEEE Trans Antennas Propag., 1991, 39, (8), pp. 11781187.
    14. 14)
      • 4. Morabito, A.F., Rocca, P.: ‘Reducing the number of elements in phase-only reconfigurable arrays generating sum and difference patterns’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 13381341.
    15. 15)
      • 8. Holm, S., Elgetun, B., Dahl, G.: ‘Properties of the beampattern of weight- and layout-optimized sparse arrays’, IEEE Trans Ultrason, Ferroelect, Freq Contr., 1997, 44, (5), pp. 983991.
    16. 16)
      • 12. Costanzo, S., Borgia, A., Massa, G.D., et al: ‘Radar array diagnosis from undersampled data using a compressed sensing/sparse recovery technique’, J. Electr. Comput. Eng., 2013, 2013, (1), pp. 15.
    17. 17)
      • 15. Candes, E.J., Wakin, M.B., Boyd, S.P.: ‘Enhancing sparsity by reweighted l1 minimization’, J. Fourier Anal. Appl., 2008, 14, pp. 877905.
    18. 18)
      • 1. Mahafza, B.R.: ‘Radar systems analysis and design using Matlab’ (CRC Press, New York, 2013, 3rd edn.).
    19. 19)
      • 9. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, New York, 2009, 7th edn.).
    20. 20)
      • 10. Oliveri, G., Rocca, P., Massa, A.: ‘Reliable diagnosis of large linear arrays - A Bayesian compressive sensing approach’, IEEE Trans Antennas Propag., 2012, 60, (10), pp. 46274636.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0645
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address