http://iet.metastore.ingenta.com
1887

Least-squares support vector machine-based Kalman filtering for GNSS navigation with dynamic model real-time correction

Least-squares support vector machine-based Kalman filtering for GNSS navigation with dynamic model real-time correction

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The accuracy of Kalman filtering (KF) relies on the quality of the observations as well as the dynamic model. However, the dynamic model is usually assumed to be invariant, which is not realistic in real global navigation satellite system (GNSS) navigation applications due to unexpected vehicular motion. A new algorithm is proposed to enhance the KF by using the least-squares support vector machine (LSSVM) technique. The LSSVM-enhanced KF (LSSVM-KF) adaptively estimates the dynamic modelling bias from historical information, and then uses the bias estimate to compensate the dynamic model. The algorithm treats the dynamic model bias as a time-variant ambiguous function which is trained with the LSSVM. A k-fold cross-validation method is developed to tune the training parameters of the LSSVM. With the corrected dynamic model, the KF is implemented to estimate the navigation parameters. To integrate LSSVM with KF, the unscented transformation is introduced to numerically compute the covariance of the LSSVM training. To verify the algorithm, simulation, semi-simulation and real GNSS vehicular experiments were carried out. The results show that the LSSVM-KF can adequately adapt to time-variant dynamics and achieve a reliable and accurate GNSS navigation solution.

References

    1. 1)
      • 1. Leick, A.: ‘GPS satellite surveying’ (Wiley, Hoboken, 1995).
    2. 2)
      • 2. Brown, R., Hwang, P.Y.C.: ‘Introduction to random signals and applied Kalman filtering’ (Wiley, New York, 1997).
    3. 3)
      • 3. Schwarz, K., Cannon, M., Wong, R.: ‘A comparison of GPS kinematic models for determination of position and velocity along a trajectory’, Manuscr. Geod., 1989, 14, (2), pp. 345353.
    4. 4)
      • 4. Singer, R.A.: ‘Estimating optimal tracking filter performance for manned maneuvering targets’, IEEE Trans. Aerosp. Electron. Syst., 1970, 6, (4), pp. 473483.
    5. 5)
      • 5. Moose, R.L.: ‘An adaptive estimator solution to maneuvering target problem’, IEEE Trans. Autom. Control, 1975, 20, (3), pp. 359362.
    6. 6)
      • 6. Zhou, H., Kumar, K.S.P.: ‘A current statistical model and adaptive algorithm for estimating maneuvering targets’, AIAA J. Guid. Control Dyn., 1984, 7, (5), pp. 596602.
    7. 7)
      • 7. Helferty, J.P.: ‘Improved tracking of maneuvering targets: the use of turn-rate distributions for acceleration modeling’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (4), pp. 13551361.
    8. 8)
      • 8. Moore, M., Wang, J.: ‘An extended dynamic model for kinematic positioning’, J. f Navig., 2003, 56, (1), pp. 7988.
    9. 9)
      • 9. Bar-Shalom, Y., Chang, K.C., Blom, H.A.P.: ‘Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm’, IEEE Trans. Aerosp. Electron. Syst., 2002, 25, (2), pp. 296300.
    10. 10)
      • 10. Mohamed, A.H., Schwarz, K.P.: ‘Adaptive Kalman filtering for GPS/INS’, J. Geod., 1999, 73, (4), pp. 193203.
    11. 11)
      • 11. Zhou, Z., Shen, Y., Li, B.: ‘A windowing-recursive approach for GPS real-time kinematic positioning’, GPS Solut., 2010, 14, (4), pp. 365373.
    12. 12)
      • 12. Zhou, Z., Li, B., Shen, Y.: ‘A window-recursive approach for GNSS kinematic navigation using pseudorange and Doppler measurements’, J. Navig., 2013, 66, (2), pp. 295313.
    13. 13)
      • 13. Sage, A.P., Husa, G.W.: ‘Adaptive filtering with unknown prior statistics’. Proc. of Joint Automatic Control Conf., Boulder, Colorado, 1969, pp. 760769.
    14. 14)
      • 14. Yang, Y., Xu, T.: ‘An adaptive Kalman filter based on sage windowing weights and variance components’, J. Navig., 2003, 56, (2), pp. 231240.
    15. 15)
      • 15. Yang, Y., Gao, W.: ‘Comparison of adaptive factors in Kalman filter on navigation results’, J. Navig., 2005, 58, (3), pp. 471478.
    16. 16)
      • 16. Geng, Y., Wang, J.: ‘Adaptive estimation of multiple fading factors in Kalman filter for navigation applications’, GPS Solut., 2008, 12, (4), pp. 273279.
    17. 17)
      • 17. Friedland, B.: ‘Treatment of bias in recursive filtering’, IEEE Trans. Autom. Control, 1969, 14, (4), pp. 359367.
    18. 18)
      • 18. Teunissen, P.J.G.: ‘Quality control in integrated navigation systems’, IEEE Aerosp. Electron. Syst. Mag., 1990, 5, (7), pp. 3541.
    19. 19)
      • 19. Yang, Y., Cui, X.: ‘Influence functions of colored noises on kinematic positioning – taking the AR model of first class as an example’, Acta Geodaetica Cartogr. Sin., 2003, 32, (1), pp. 610.
    20. 20)
      • 20. Suykens, J.A.K., Vandewalle, J.: ‘Least squares support vector machine classifiers’, Neural Process. Lett., 1999, 9, (3), pp. 293300.
    21. 21)
      • 21. Suykens, J.A.K.: ‘Nonlinear modelling and support vector machines, Instrumentation and Measurement Technology Conference, 2001’. IMTC 2001, Proc. of the 18th IEEE, 2001, (1), pp. 287294.
    22. 22)
      • 22. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., et al: ‘Least squares support vector machines’ (World Scientific, Singapore, 2002).
    23. 23)
      • 23. Jwo, D., Huang, H.C.: ‘Neural network aided adaptive extended Kalman Filtering approach for DGPS positioning’, J. Navig., 2004, 57, (3), pp. 449463.
    24. 24)
      • 24. Xu, Z., Li, Y., Rizos, C., et al: ‘Novel hybrid of LS-SVM and Kalman filter for GPS/INS integration’, J. Navig., 2010, 63, (2), pp. 289299.
    25. 25)
      • 25. Vapnik, V., Chervonenkis, A.: ‘On the uniform convergence of relative frequencies of events to their probabilities’, Theory Probab. Appl., 1971, 16, (2), pp. 264280.
    26. 26)
      • 26. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, 1989).
    27. 27)
      • 27. Schölkopf, B., Smola, A.J.: ‘Learning with kernels’ (MIT Press, Cambridge, 2002).
    28. 28)
      • 28. Jwo, D., Lai, C.: ‘Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation’, GPS Solut., 2008, 12, (4), pp. 249260.
    29. 29)
      • 29. Julier, S.J., Uhlmann, J.K., Durrant-whyte, H.F.: ‘A new method for the nonlinear transformation of means and covariances in filters and estimators’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 477482.
    30. 30)
      • 30. Vapnik, V.: ‘The nature of statistical learning theory’ (Springer-Verlag, New York, 1995).
    31. 31)
      • 31. Rissanen, J.: ‘Modeling by the shortest data description’, Automatica, 1978, 14, (5), pp. 465471.
    32. 32)
      • 32. Luntz, A., Brailovsky, V.: ‘On estimation of characters obtained in statistical procedure of recognition’, Technicheskaya Kibernet., 1969, 3, pp. 563575(in Russian).
    33. 33)
      • 33. Duan, K., Keerthi, S.S., Poo, A.N.: ‘Evaluation of simple performance measures for tuning SVM hyperparameters’, Neurocomputing, 2003, 51, (2), pp. 4159.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0422
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0422
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address