Design of a sparse antenna array for radar-based structural health monitoring of wind turbine blades

Design of a sparse antenna array for radar-based structural health monitoring of wind turbine blades

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The imaging performance of a sparse antenna array depends on the arrangement of the transmitting and receiving elements. In this study, the authors systematically extend the work presented by Caba and Boreman by a constraint optimisation of the Y-shaped antenna arrangement. This will lead to an improved point-spread function with reduced sidelobes. It was found that a 30% improvement of the imaging performance using backprojection techniques could be achieved compared with conventional array designs. The optimised sparse antenna array has been used in a simulation study to evaluate its performance for radar-based structural health monitoring of wind turbine blades. Depending on the damage position, either close to the front or back side of the rotor blade, the localisation error has been quantified as a function of its generally unknown effective relative permittivity.


    1. 1)
      • 1. Caba, W., Boreman, G.: ‘Active sparse-aperture millimeter-wave imaging using digital correlators’, J. Infrared Millim. Terahertz Waves, 2011, 32, (4), pp. 434450. Available at
    2. 2)
      • 2. Haimovich, A., Blum, R., Cimini, L.: ‘MIMO radar with widely separated antennas’, IEEE Signal Process. Mag., 2008, 25, (1), pp. 116129. Available at
    3. 3)
      • 3. Balanis, C.A.: ‘Antenna theory: analysis and design’ (Wiley, 2016, 4th edn.).
    4. 4)
      • 4. Ahmed, S.S., Schiessl, A., Schmidt, L.-P.: ‘A novel fully electronic active real-time imager based on a planar multistatic sparse array’, IEEE Trans. Microw. Theory Tech., 2011, 59, (12), pp. 35673576.
    5. 5)
      • 5. Klare, J., Saalmann, O.: ‘MIRA-CLE X: a new imaging MIMO-radar for multi-purpose applications’. 2010 European Radar Conf. (EuRAD), 2010, pp. 129132.
    6. 6)
      • 6. Gumbmann, F., Schmidt, L.-P.: ‘Millimeter-wave imaging with optimized sparse periodic array for short-range applications’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 36293638.
    7. 7)
      • 7. Moll, J., Schöps, P., Krozer, V.: ‘Towards three-dimensional millimeter-wave radar with the bistatic fast-factorized back-projection algorithm – potential and limitations’, IEEE Trans. Terahertz Sci. Technol., 2012, 2, (4), pp. 432440.
    8. 8)
      • 8. Baccouche, B., Keil, A., Kahl, M., et al: ‘A sparse array based sub-terahertz imaging system for volume inspection’. IEEE, September 2015, pp. 438441.
    9. 9)
      • 9. Huang, Y., Brennan, P.V., Patrick, D., et al: ‘FMCW based MIMO imaging radar for maritime navigation’, Prog. Electromagn. Res., 2011, 115, pp. 327342.
    10. 10)
      • 10. Ghasr, M.T., Kharkovsky, S., Bohnert, R., et al: ‘30 GHz linear high-resolution and rapid millimeter wave imaging system for NDE’, IEEE Trans. Antennas Propag., 2013, 61, (9), pp. 47334740. Available at
    11. 11)
      • 11. Amin, M.G.: ‘Through-the-wall radar imaging’ (CRC Press, Boca Raton, FL, 2011).
    12. 12)
      • 12. Moll, J., Kotiranta, M., Hils, B., et al: ‘A 100 GHz millimeter wave radar system with 32 transmitters and 32 receivers for space applications’. 42nd European Microwave Conf. (EuMC), Amsterdam, The Netherlands, 2012, pp. 687690.
    13. 13)
      • 13. Fuchs, B.: ‘Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations’, IEEE Trans. Antennas Propag., 2012, 60, (7), pp. 34993503. Available at
    14. 14)
      • 14. Quijano, J.L.A., Righero, M., Vecchi, G.: ‘Sparse 2-D array placement for arbitrary pattern mask and with excitation constraints: a simple deterministic approach’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 16521662. Available at
    15. 15)
      • 15. Derham, T., Doughty, S., Baker, C., et al: ‘Ambiguity functions for spatially coherent and incoherent multistatic radar’, IEEE Trans. Aerosp. Electron. Syst., 2010, 46, (1), pp. 230245. Available at
    16. 16)
      • 16. Camps, A., Torres, F., Lopez-Dekker, P., et al: ‘Redundant space calibration of hexagonal and Y-shaped beamforming radars and interferometric radiometers’, Int. J. Remote Sens., 2003, 24, (24), pp. 51835196.
    17. 17)
      • 17. Romero, G., Méndez, A.L., Panduro, M.A., et al: ‘Timed arrays of spiral antennas for circularly polarised UWB scanned patterns with low side lobes’, IET Microw. Antennas Propag., 2016, 10, (5), pp. 587593. Available at
    18. 18)
      • 18. Ghasr, M.T., Abou-Khousa, M.A., Kharkovsky, S., et al: ‘Portable real-time microwave camera at 24 GHz’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 11141125. Available at
    19. 19)
      • 19. Oliveri, G., Caramanica, F., Migliore, M.D., et al: ‘Synthesis of nonuniform MIMO arrays through combinatorial sets’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 728731. Available at
    20. 20)
      • 20. Dong, J., Liu, F., Guo, Y., et al: ‘MIMO radar array thinning optimization exploiting almost difference sets’, Optik, Int. J. Light Electron Opt., 2016, 127, (10), pp. 44544460. Available at
    21. 21)
      • 21. Hawes, M.B., Liu, W.: ‘A compressive sensing based approach to sparse wideband array design’, arXiv preprint arXiv:1403.4879, 2014.
    22. 22)
      • 22. Farsaei, A.A., Mokhtari-Koushyar, F., Javad Seyed-Talebi, S.M., et al: ‘Improved two-dimensional millimeter-wave imaging for concealed weapon detection through partial Fourier sampling’, J. Infrared Millim. Terahertz Waves, 2016, 37, (3), pp. 267280. Available at
    23. 23)
      • 23. Moll, J., Mälzer, M., Scholz, N., et al: ‘Radar-based detection of birds near wind energy plants: first experiences from a field study’. Tenth German Microwave Conf., 2016, pp. 239242.
    24. 24)
      • 24. Scholz, M., Rediske, S., Nuber, A., et al: ‘Radar-based non-destructive testing of wind turbine blades: first experiments from a laboratory study’. Eighth European Workshop on Structural Health Monitoring, 2016, pp. 110.
    25. 25)
      • 25. Crespo-Ballesteros, M., Antoniou, M., Cherniakov, M.: ‘Wind turbine blade radar signatures in the near-field: modelling and experimental confirmation’, IEEE Trans. Aerosp. Electron. Syst., 2017, pp. 120. Available at
    26. 26)
      • 26. Ciang, C.C., Lee, J.-R., Bang, H.-J.: ‘Structural health monitoring for a wind turbine system: a review of damage detection methods’, Meas. Sci. Technol., 2008, 19, (12), p. 122001.
    27. 27)
      • 27. Yang, W., Tavner, P.J., Crabtree, C.J., et al: ‘Wind turbine condition monitoring: technical and commercial challenges: wind turbine condition monitoring: technical and commercial challenges’, Wind Energy, 2014, 17, (5), pp. 673693.
    28. 28)
      • 28. Yang, B., Sun, D.: ‘Testing, inspecting and monitoring technologies for wind turbine blades: a survey’, Renew. Sustain. Energy Rev., 2013, 22, pp. 515526. Available at
    29. 29)
      • 29. García Márquez, F.P., Tobias, A.M., Pinar Pérez, J.M., et al: ‘Condition monitoring of wind turbines: techniques and methods’, Renew. Energy, 2012, 46, pp. 169178. Available at
    30. 30)
      • 30. Kharkovsky, S., Zoughi, R.: ‘Microwave and millimeter wave nondestructive testing and evaluation – overview and recent advances’, IEEE Instrum. Meas. Mag., 2007, 10, (2), pp. 2638. Available at
    31. 31)
      • 31. Voigt, C.C., Lehnert, L.S., Petersons, G., et al: ‘Wildlife and renewable energy: German politics cross migratory bats’, Eur. J. Wildlife Res., 2015, 61, (2), pp. 213219. Available at
    32. 32)
      • 32. Hill, R., Hill, K., Aumüller, R., et al: ‘Of birds, blades and barriers: detecting and analysing mass migration events at alpha ventus’, inFederal Maritime and Hydrographic A and Federal Ministry for the Environmen (EDs.): ‘Ecological research at the offshore windfarm alpha ventus’ (Springer Fachmedien Wiesbaden, Wiesbaden, 2014), pp. 111131. Available at
    33. 33)
      • 33. Moll, J., Krozer, V.: ‘Radar-based mechanical vibration sensing for structural health monitoring applications: a comparison of radar transceiver measurements at 24 and 100 GHz’. Eighth European Workshop on Structural Health Monitoring, 2016, pp. 16.
    34. 34)
      • 34. Gorham, L.A., Moore, L.J.: ‘SAR image formation toolbox for MATLAB’. in Zelnio, E.G., Garber, F.D. (EDs.): ‘SPIE defense, security, and sensing’, ser. SPIE Proceedings (SPIE, 2010), pp. 769906769906–13.
    35. 35)
      • 35. Soumekh, M.: ‘Synthetic aperture radar signal processing with MATLAB algorithms’ (Wiley, New York, 1999), oCLC: 833493976.
    36. 36)
      • 36. Moll, J., Kelly, T., Byrne, D., et al: ‘Microwave radar imaging of heterogeneous breast tissue integrating a-priori information’, Int. J. Biomed. Imaging, 2014, 2014, p. 10, pp. Article ID 943549. Available at
    37. 37)
      • 37. Günther, M.: ‘Konzepte der rechnergestützen modellierung und simulation der elektromagnetischen wellenausbreitung’. Diplomarbeit, Technische Universität Chemnitz, Chemnitz, 03/1999. Available at
    38. 38)
      • 38. Huang, Y., Boyle, K.: ‘Antennas: from theory to practice: practical, concise and complete reference for the basics of modern antenna design’, 2008.

Related content

This is a required field
Please enter a valid email address