http://iet.metastore.ingenta.com
1887

Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas

Multiple-component polarimetric decomposition with new volume scattering models for PolSAR urban areas

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Multiple-component model-based decompositions (MCSMs) of polarimetric synthetic aperture radar (PolSAR) data often exhibit overestimation of volume scattering power, which makes the oriented built-up areas show volume scattering rather than double-bounce scattering. Deorientation processing has been incorporated into the three- and four-component decomposition algorithms to overcome this limitation, where the coherency matrix is rotated to minimise the cross-polarised term. However, even with the deorientation, some urban areas with large orientation angles are still misjudged as vegetation. In this study, the performance of deorientation processing on the MCSM is discussed and then an improved polarimetric model-based decomposition method for PolSAR urban areas is proposed, which is inspired by Sato's decomposition method. Since the cross-polarised HV scattering component is caused not only by vegetation but also by oriented buildings, the volume scattering model of original multiple-component decomposition is extended to describe the HV scattering from these two different land covers. A general volume scattering model is adopted to describe the HV scattering from vegetated areas while the orientation angle of built-up areas is adaptively considered for modelling the HV scattering from oriented buildings. Experiments with the phased array type L-band synthetic aperture radar data demonstrate that the authors’ proposed method can get better decomposition results over urban areas than other methods.

References

    1. 1)
      • 1. Chen, S., Sato, M.: ‘Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (4), pp. 19851997.
    2. 2)
      • 2. Kajimoto, M., Susaki, J.: ‘Urban-area extraction from polarimetric SAR images using polarization orientation angle’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (2), pp. 337341.
    3. 3)
      • 3. Antropov, O., Rauste, Y., Astola, H., et al: ‘Land cover and soil type mapping from spaceborne PolSAR data at L-band with probabilistic neural network’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (9), pp. 52565270.
    4. 4)
      • 4. Antropov, O., Rauste, Y., Lonnqvist, A., et al: ‘PolSAR Mosaic Normalization for improved land-cover mapping’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (6), pp. 10741078.
    5. 5)
      • 5. Niu, X., Ban, Y.: ‘Multitemporal Radarsat-2 polarimetric SAR data for urban land cover classification using an object-based support vector machine and a rule-based approach’, Int. J. Remote Sens., 2013, 34, (1), pp. 126.
    6. 6)
      • 6. Xing, M., Guo, R., Qiu, C., et al: ‘Experimental research of unsupervised Cameron/Maximum-Likelihood classification method for fully polarimetric synthetic aperture radar data’, IET Radar Sonar Navig., 2010, 4, (1), pp. 8595.
    7. 7)
      • 7. Neumann, M., Saatchi, S.S., Ulander, L.M.H., et al: ‘Parametric and non-parametric forest biomass estimation from PolInSAR data’. 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2011, pp. 420423.
    8. 8)
      • 8. Freeman, A., Durden, S.L.: ‘A three-component scattering model for polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 1998, 36, (3), pp. 963973.
    9. 9)
      • 9. Yamaguchi, Y., Moriyama, T., Ishido, M., et al: ‘Four-component scattering model for polarimetric SAR image decomposition’, IEEE Trans. Geosci. Remote Sens., 2005, 43, (8), pp. 16991706.
    10. 10)
      • 10. Yamaguchi, Y., Yajima, Y., Yamada, H.: ‘A four-component decomposition of PolSAR images based on the coherency matrix’, IEEE Geosci. Remote Sens. Lett., 2005, 3, (3), pp. 292296.
    11. 11)
      • 11. Moriyama, T., Uratsuka, S., Umehara, T., et al: ‘Polarimetric SAR image analysis using model fit for urban structures’, IEICE Trans. Commun., 2005, E88-B, (3), pp. 12341242.
    12. 12)
      • 12. Zhang, L., Zou, B., Cai, H., et al: ‘Multiple-component scattering model for polarimetric SAR image decomposition’, IEEE Geosci. Remote Sens. Lett., 2008, 5, (4), pp. 603607.
    13. 13)
      • 13. Schuler, D., Jansen, R., Lee, J., et al: ‘Polarisation orientation angle measurements of ocean internal waves and current fronts using polarimetric SAR’, Proc. IEE Radar Sonar Navig., 2003, 150, (3), pp. 135143.
    14. 14)
      • 14. Chen, S.W., Ohki, M., Shimada, M., et al: ‘Deorientation effect investigation for model-based decomposition over oriented built-up areas’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (2), pp. 273277.
    15. 15)
      • 15. Sato, A., Yamaguchi, Y.: ‘Four-component scattering power decomposition with extended volume scattering model’, IEEE Geosci. Remote Sens. Lett., 2012, 9, (2), pp. 166170.
    16. 16)
      • 16. Yamaguchi, Y., Sato, A., Boerner, W.M., et al: ‘Four-component scattering power decomposition with rotation of coherency matrix’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (6), pp. 22512258.
    17. 17)
      • 17. An, W., Cui, Y., Yang, J.: ‘Three-component model-based decomposition for polarimetric SAR data’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (6), pp. 27322739.
    18. 18)
      • 18. An, W., Xie, C., Yuan, X., et al: ‘Four-component decomposition of polarimetric SAR images with deorientation’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (6), pp. 10901094.
    19. 19)
      • 19. Zou, B., Lu, D., Zhang, L., et al: ‘Eigen-decomposition-based four-component decomposition for PolSAR data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (JSTARS), 2016, 9, (3), pp. 12861296.
    20. 20)
      • 20. Antropov, O., Rauste, Y., Hame, T.: ‘Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (10), pp. 38383848.
    21. 21)
      • 21. Freeman, A.: ‘Fitting a two-component scattering model to polarimetric SAR data from forests’, IEEE Trans. Geosci. Remote Sens., 2007, 45, (8), pp. 25832592.
    22. 22)
      • 22. Hajnsek, I., Jagdhuber, T.: ‘Potential of estimating soil moisture under vegetation cover by means of Polsar’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (2), pp. 442454.
    23. 23)
      • 23. Neumann, M., Ferro-Famil, L., Reigber, A.: ‘Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data’, IEEE Trans. Geosci. Remote Sens., 2010, 48, (3), pp. 10861104.
    24. 24)
      • 24. Arii, M., Zyl, J.J.V., Kim, Y.: ‘Adaptive model-based decomposition of polarimetric SAR covariance matrices’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (3), pp. 11041113.
    25. 25)
      • 25. Cui, Y., Yamaguchi, Y., Yang, J., et al: ‘Three-component power decomposition for polarimetric SAR data based on adaptive volume scatter modeling’, Remote Sens., 2012, 4, (6), pp. 15591572.
    26. 26)
      • 26. Hong, S.H., Wdowinski, S.: ‘Double-bounce component in cross-polarimetric SAR from a new scattering target decomposition’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (6), pp. 30393051.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2016.0105
Loading

Related content

content/journals/10.1049/iet-rsn.2016.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address