http://iet.metastore.ingenta.com
1887

Spectrum sensing and sharing for cognitive radars

Spectrum sensing and sharing for cognitive radars

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the problem of spectrum sensing and spectrum sharing for cognitive radar operating in spectrally dense environments. The authors focus on how compressed sensing in spectrum sensing can allow a significant reduction in acquisition time reducing the cost for high-resolution analogue-to-digital converters. They derive an algorithm for estimating the channel parameters that characterise the behaviour of the primary user of the channel and also define a spectrum-sharing method to minimise the interference between the radar and the primary user.

References

    1. 1)
      • 1. ITU-R Resolution 229: ‘Use of the bands 5150–5250 MHz, 5250–5350 MHz and 5470–5725 MHz by the mobile service for the implementation of wireless access systems including radio local area networks’, 2012.
    2. 2)
      • 2. ITU-R RECOMMENDATION M.1652: ‘Dynamic frequency selection (DFS) in wireless access systems including radio local area networks for the purpose of protecting the radio determination service in the 5 GHz band’, 2003.
    3. 3)
      • 3. U.S. Department of Commerce: ‘An assessment of the near-term viability of accommodating wireless broadband systems in the 1675–1710 MHz, 1755–1780 MHz, 3500–3650 MHz, and 4200–4220 MHz, 4380–4400 MHz Bands’, 2010.
    4. 4)
      • 4. Obregon, E., Sung, K.W., Zander, J.: ‘Secondary access to the radar spectrum bands: regulatory and business implications’. Twenty-Fourth European Regional Conf. of the Int. Telecommunications Society, Florence, Italy, 2013.
    5. 5)
      • 5. La Manna, M., Stinco, P., Greco, M., et al: ‘Design of a cognitive radar for operation in spectrally dense environments’. Proc. IEEE National Radar Conf., Ottawa, Ontario, Canada, 29 April–3 May 2013.
    6. 6)
      • 6. Stinco, P., Greco, M., Gini, F., et al: ‘Compressed spectrum-sensing in cognitive radars’. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Proc., Florence, Italy, 04–09 May 2014, pp. 8185.
    7. 7)
      • 7. Stinco, P., Greco, M., Gini, F., et al: ‘Channel parameters estimation for cognitive radars’. Fourth Int. Workshop on Cognitive Information Processing – Proc. of CIP 2014, Copenhagen, Denmark, 26–28 May 2014.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 14. Hur, Y., Park, J., Woo, W., et al: ‘A wideband analog multi-resolution spectrum-sensing (MRSS) technique for cognitive radio (CR) systems’. Proc. IEEE Int. Symp. on Circuits and Systems, Island of Kos, Greece, May 2006.
    15. 15)
      • 15. Yuan, Y., Bahl, P., Chandra, R., et al: ‘KNOWS: cognitive radio networks over white spaces’. Proc. IEEE Int. Symp. on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, April 2007.
    16. 16)
      • 16. Federal Communications Commission, Notice of Inquiry and Notice of Proposed Rulemaking: ‘In the matter of establishment of an interference temperature metric to quantify and manage interference and to expand available unlicensed operation in certain fixed, mobile and satellite frequency bands’. ET Docket No. 03-237; November 28, 2003.
    17. 17)
    18. 18)
      • 18. Bater, J., Tan, H., Brown, K.N., et al: ‘Modelling interference temperature constraints for spectrum access in cognitive radio networks’. IEEE Int. Conf. on Communications (ICC 2007), 24–28 June 2007, pp. 64936498.
    19. 19)
      • 19. Sharma, M., Sahoo, A., Nayak, K.D.: ‘Channel modeling based on interference temperature in underlay cognitive wireless networks’. IEEE Int. Symp. on Wireless Communication Systems (ISWCS 2008), 21–24 October 2008, pp. 224228.
    20. 20)
      • 20. Barnes, S.D., Maharaj, B.T.: ‘Performance of a hidden Markov channel occupancy model for cognitive radio’. AFRICON 2011, 13–15 September 2011, pp. 16.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Eldar, Y.C., Kutyniok, G.: ‘Compressed sensing’ (Cambridge University Press, 2012).
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 32. Dempster, A.P., Laird, N.M., Rubin, D.B.: ‘Maximum likelihood from incomplete data via the EM algorithm’, J. R. Stat. Soc., 1977, 39, (1), pp. 138.
    33. 33)
    34. 34)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0372
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0372
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address