access icon free Target motion estimation via multi-node forward scatter radar system

The focus of this study is on the estimation of the kinematic parameters of a moving target via a multiple-input-multiple output (MIMO) forward scatter radar (FSR) system. For this purpose, a crossing time-based estimation technique is proposed that exploits the information on the time instants at which the target crosses the individual baselines of multiple FSR nodes to retrieve the target motion parameters. First the accuracy of such technique is investigated from a theoretical point of view through Monte Carlo simulations and then the effectiveness of the proposed approach is demonstrated by applying it to measured MIMO FSR data. Shown results prove the practical applicability of the proposed technique and demonstrate the potential of MIMO FSR configuration.

Inspec keywords: motion estimation; Monte Carlo methods; electromagnetic wave scattering; MIMO radar; radar signal processing

Other keywords: kinematic parameter estimation; multinode forward scatter radar system; crossing time-based estimation technique; multiple input multiple output forward scatter radar system; MIMO FSR system; Monte Carlo simulation; target motion estimation

Subjects: Monte Carlo methods; Signal processing and detection; Radar equipment, systems and applications; Radar theory

References

    1. 1)
      • 16. Daun, M., Koch, W.: ‘Multistatic target tracking for non-cooperative illumination by DAB/DVB-T’. IEEE Radar Conf., 2008. RADAR '08, 2008, pp. 16.
    2. 2)
      • 7. Blyakhman, A., Ryndyk, A., Sidorov, S.: ‘Forward scattering radar moving object coordinate measurement’. IEEE Int. Radar Conf., Alexandria, VA, May 2000, pp. 678682.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 9. Mixon, D.G.: ‘Doppler-only multistatic radar’ (Biblioscholar, 2012).
    7. 7)
      • 21. Skolnik, M.: ‘Radar handbook’ (Mc-Graw Hill, 3rd edn.).
    8. 8)
    9. 9)
      • 6. Blyakhman, A., Runova, I.: ‘Forward scattering radiolocation bistatic RCS and target detection’. IEEE Int. Radar Conf., Waltham, MA, April 1999, pp. 203208.
    10. 10)
      • 14. Daun, M.: ‘Deghosting in passive air surveillance systems’. 2010 11th I. Radar Symp. (IRS), 2010, pp. 18.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 10. Gashinova, M., Sizov, V., Zakaria, N.A., et al: ‘Signal detection in multi-frequency forward scatter radar’. Seventh European Radar Conf., 2010, Paris, France, pp. 276279.
    15. 15)
    16. 16)
      • 12. Ufimtsev, P.Y.: ‘Fundamentals of the physical theory of diffraction’ (John Wiley & Sons, 2007).
    17. 17)
    18. 18)
      • 13. Gashinova, M., Daniel, L., Hoare, E., et al: ‘Signal characterisation and processing in the forward scatter mode of bistatic passive coherent location systems’, EURASIP J. Adv. Signal Process. 2013: Emerg. Radar Technol., 2013, (36), doi: 10.1186/1687-6180-2013-36.
    19. 19)
      • 15. Daun, M., Berger, C.R.: ‘Track initialization in a multistatic DAB/DVB-T network’. 2008 11th Int. Conf. on Information Fusion, 2008, pp. 18.
    20. 20)
    21. 21)
    22. 22)
      • 11. Gashinova, M., Daniel, L., Cherniakov, M., et al: ‘Multistatic forward scatter radar for accurate motion parameters estimation of low observable targets’. IEEE Int. Radar Conf., Lille, France, October 2014.
    23. 23)
      • 8. Ryndyk, A.G., Kuzin, A.A., Myakinkov, A.V.: ‘Target tracking in forward scattering radar with multi-beam transmitting antenna’. Int. Radar Conf., Radar 2009, Bordeaux (France), October 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0130
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading