http://iet.metastore.ingenta.com
1887

Review of micro-Doppler signatures

Review of micro-Doppler signatures

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Micro-Doppler signals refer to Doppler scattering returns produced by the motions of the target other than gross translation. The small micro-motions of a subject, and even just parts of a subject, can be observed through the micro-Doppler signature it creates in response to an active emitter such as a radar, laser, and even acoustic emitters. These micro-Doppler signatures are produced by the kinematic properties of the subject's motion and can be used to extract the salient features of the subject's motion, and often, identify the subject. The rapidly declining cost of micro-Doppler-capable active sensors like radar with their dramatically improving capabilities, provide significant motivation in developing micro-Doppler techniques that can improve the exploitation of these sensors. Micro-Doppler techniques aim at extracting the micro-motion of the subject that may be unique to a particular subject class or activity in order to distinguish probable false alarms from real detections, as well as to increase the value of the information extracted from the sensor. The source of micro-motion depends on the subject and can be a rotating propeller on a fixed-wing aircraft, the multiple spinning rotor blades of a helicopter, or an unmanned aerial vehicle (UAV); the vibrations of an engine shaking a vehicle; an antenna rotating on a ship; the flapping wings of birds; the swinging arms and legs of a walking person; and many other sources. Confuser detections, such as birds for UAVs or animals for humans, can be interpreted as false alarms for a sensor system, so using the available micro-Doppler returns for classification can significantly reduce the sensor false alarm rate, thereby improving the utility of the sensor system. This study reviews the current research in micro-Doppler based on subject type, sensor capabilities, as well as environmental effects, and then proposes future research areas for micro-Doppler.

References

    1. 1)
      • 1. Chen, V.C.: ‘The micro-Doppler effect in radar’ (Artech House, Boston/London, 2011).
    2. 2)
      • 2. Chen, V.C., Tahmoush, D., Miceli, W.J.: ‘Radar micro-Doppler signature’. Processing and Applications, IET Digital Library, 2014.
    3. 3)
      • 3. Stankovic, L., Stankovic, S., Orovic, I., et al: ‘Time frequency analysis of micro-Doppler signals based on compressive sensing’ (CRC Press, 2014).
    4. 4)
      • 4. Chen, V.C., Miceli, W.J., Himed, B.: ‘Micro-Doppler analysis in ISAR – review and perspectives’. IEEE 2009 Int. Radar Conf., Bordeaux, France, 12–16 October 2009.
    5. 5)
    6. 6)
      • 6. Ghaleb, A.: ‘Analysis of micro-Doppler in imaging radar’. PhD Thesis, Telecom Paris/Tech, France, 2009.
    7. 7)
    8. 8)
      • 8. Martin, J., Mulgrew, B.: ‘Analysis of the theoretical radar return signal from aircraft propeller blades’. IEEE 1990 Int. Radar Conf., 1990, pp. 569572.
    9. 9)
      • 9. Chen, V.C.: ‘Analysis of radar micro-Doppler signature with time-frequency transform’. Proc. IEEE Workshop on Statistical Signal and Array Processing (SSAP), Pocono, PA, 2000, pp. 463466.
    10. 10)
      • 10. Clemente, C., Soraghan, J.J.: ‘Vibrating target micro-Doppler signature in bistatic SAR with a fixed receiver’, IEEE Trans. GRS, 2012, 50, (8), pp. 32193227.
    11. 11)
    12. 12)
      • 12. Chen, G., Yu, H., Yang, X.: ‘Micro-Doppler analysis and parameter estimation of the rotating linear rigid target’. Proc. of IEEE Int. Conf. on Computer Science and Automation Engineering, 2012, vol. 1, pp. 9497.
    13. 13)
      • 13. Wang, Q., Xing, M., Lu, G., et al: ‘High-resolution three-dimensional radar imaging for rapidly spinning targets’, IEEE Trans. GRS, 2008, 46, (1), pp. 2230.
    14. 14)
      • 14. Smith, G.E.: ‘Radar target micro-Doppler signature classification’. PhD dissertation, Department of Electronic and Electrical Engineering, University College London, 2008.
    15. 15)
      • 15. Anderson, M.G.: ‘Design of multiple frequency continuous wave radar hardware and micro-Doppler based detection and classification algorithms’. PhD dissertation, University of Texas at Austin, 2008.
    16. 16)
      • 16. Bjoklund, S., Johansson, T., Petersson, H.: ‘Evaluation of a micro-Doppler classification method on mm-wave data’. Proc. of 2012 IEEE Radar Conf., 2012, pp. 934939.
    17. 17)
      • 17. Li, Y., Du, L., Liu, H.: ‘Moving vehicle classification based on micro-Doppler signature’. Proc. of 2011 IEEE Int. Conf. on Signal Processing, Communications and Computing, 2011, pp. 14.
    18. 18)
      • 18. Li, Y., Du, L., Liu, H.: ‘Noise robust classification of moving vehicles via micro-Doppler signatures’. 2013 IEEE Radar Conf., Ottawa, Canada, May 2013.
    19. 19)
    20. 20)
      • 20. Bar-Hillel, A., Bilik, I., Hecht, R.: ‘Naive bayes nearest neighbor classification of ground moving targets’. 2013 IEEE Radar Conf., Ottawa, Canada, 2013.
    21. 21)
      • 21. Stove, A.G., Sykes, S.R.: ‘A Doppler-based automatic target classifier for a battlefield surveillance radar’. 2002 Int. Radar Conf., Edinburgh, UK, 2002, pp. 419423.
    22. 22)
      • 22. Stove, A.G., Sykes, S.R.: ‘A Doppler-based target classifier using linear discriminants and principal components’. Proc. of 2003 Int. Radar Conf., Adelaide, Australia, September 2003, pp. 171176.
    23. 23)
      • 23. Park, J., Johnson, J.T., Majuec, N., et al: ‘Software defined radar studies of human motion signatures’. Proc. of 2012 IEEE Radar Conf., 2012, pp. 596601.
    24. 24)
      • 24. Wang, Y., Liu, Q., Fathy, A.E.: ‘CW and pulse-Doppler radar processing based on FPGA for human sensing applications’, IEEE Trans. on Geosci. Remote Sens., 2013, 51, (5–2), pp. 30973107.
    25. 25)
      • 25. Liu, Q., Wang, Y., Fathy, A.: ‘Towards low cost, high speed data sampling module for multifunctional real-time UWB radar’, IEEE Trans. AES, 2013, 49, (2), pp. 13011316.
    26. 26)
      • 26. Godana, B., Barroso, A., Leus, G.: ‘Estimating human movement parameters using a software radio-based radar’, Int. J. Adv. Syst. Meas., 2011, 4, (1 & 2), pp. 2031.
    27. 27)
    28. 28)
      • 28. Wang, Y., Liu, Q., Fathy, A.E.: ‘CW and pulse-Doppler radar processing based on FPGA for human sensing applications’, IEEE Trans. GRS, 2013, 51, (5), pp. 30973107.
    29. 29)
    30. 30)
    31. 31)
      • 31. Chen, X.L., Guan, J., He, Y.: ‘Detection and estimation method for marine target with micromotion via phase differentiation and radon-lvs distribution’, IET Radar Sonar Navig., 2015.
    32. 32)
    33. 33)
    34. 34)
      • 34. Alabaster, C.M., Hughes, E.J.: ‘Is it a Bird or is it a Plane?’. Proc. IEEE Sixth Int. Conf. on Waveform Diversity & Design, Lihue, HI, 22–27 January 2012.
    35. 35)
      • 35. Ozcan, A.H., Baykut, S., Sahinkaya, D.S.A., et al: ‘Micro-Doppler effect analysis of single bird and bird flock for linear FMCW radar’. The 20th Signal Processing and Communications Application Conf. (SIU), 2012, pp. 14.
    36. 36)
      • 36. Lei, P., Sun, J., Wang, J., et al: ‘Micromotion parameter estimation of free rigid targets based on radar micro-Doppler’, IEEE Trans. GRS, 2012, 50, (10), pp. 37763786.
    37. 37)
      • 37. Yan, H., Fu, X., Lei, X., et al: ‘Parametric estimation of micro-Doppler on spatial precession cone’. 2011 IEEE CIE Int. Conf. on Radar, 2011, vol. 1, pp. 613616.
    38. 38)
      • 38. Gao, H., Xie, L., Wen, S., et al: ‘Micro-Doppler signature extraction from ballistic target with micro-motions’, IEEE Trans. AES, 2010, 46, (4), pp. 19681982.
    39. 39)
      • 39. Zhao, Y., Shen, X., Liang, J.: ‘A novel micro-motion model for ballistic missile targets identification’. 2011 IEEE CIE Int. Conf. on Radar, 2011, vol. 1, pp. 604608.
    40. 40)
      • 40. Wang, T., Wang, X., Chang, Y., et al: ‘Estimation of precession parameters and generation of ISAR images of ballistic missile targets’, IEEE Trans. AES, 2010, 46, (4), pp. 19831995.
    41. 41)
    42. 42)
      • 42. Rotander, C., von Sydow, H.H.: ‘Classification of helicopters by the L/N quotient’. IEEE 1997 Radar Conf. (Radar ’97), 1997, pp. 629633.
    43. 43)
      • 43. Wellman, R.J., Silvious, J.L.: ‘Doppler signature measurements of an Mi-24 hind-D helicopter at 92 GHz’, ARL-TR-1637, Army Research Laboratory, Adelphi, MD, 1998.
    44. 44)
      • 44. Cilliers, A., Nel, W.: ‘Helicopter parameter extraction using joint time-frequency and tomographic techniques’. Proc. IEEE 2008 Int. Radar Conf., 2008, pp. 598603.
    45. 45)
    46. 46)
      • 46. Johnsen, T., Olsen, K.E., Gundersen, R.: ‘Hovering helicopter measured by bi-/multistatic CW radar’. Proc. IEEE 2003 Radar Conf., May 2003, pp. 165170.
    47. 47)
      • 47. Olsen, K.E., Johnsen, T., Johnsrud, S., et al: ‘Multistatic and /or quasi monostatic radar measurements of propeller aircrafts’. Proc. of 2007 IET Int. Radar Conf., October 2007, pp. 16.
    48. 48)
    49. 49)
      • 49. Cilliers, A., Nel, W.: ‘Helicopter parameter extraction using joint time-frequency and tomographic techniques’. IEEE 2008 Int. Conf. on Radar, Adelaide, Australia, 2008, pp. 25.
    50. 50)
      • 50. Molchanov, P., Totsky, A., Astola, J., et al: ‘Aerial target classification by micro-Doppler signatures and bicoherence-based features’. Proc. of Ninth European Radar Conf., Amsterdam, The Netherlands, 31 October– 2 November 2012, pp. 214217.
    51. 51)
      • 51. Olsen, K.E., Johnsen, T., Lie-Svendsen, Ø., et al: ‘Micro-Doppler signatures of helicopter rotor blades’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘chapter 7 in radar micro-Doppler signature-processing and applicationsRadar Series 34 (IET, 2014).
    52. 52)
      • 52. Clemente, C., Soraghan, J.J.: ‘Passive bistatic radar for helicopters classification: a feasibility study’. Proc. of 2012 IEEE Radar Conf., 2012, pp. 946949.
    53. 53)
    54. 54)
      • 54. Bączyk, M.K., Samczyński, P., Kulpa, K., et al: ‘Micro-Doppler signatures of helicopters in multistatic passive radars’, IET Radar Sonar Navig., 2015.
    55. 55)
      • 55. de Wit, J.J.M., Harmanny, R.I.A., Premel-Cabic, G.: ‘Micro-Doppler analysis of small UAVs’. Proc. of Ninth European Radar Conf., Amsterdam, The Netherlands, 31 October–2 November 2012, pp. 210213.
    56. 56)
    57. 57)
    58. 58)
      • 58. Green, J.L., Balsley, B.: ‘Identification of flying birds using a Doppler radar’. Proc. Conf. on Biological Aspects of Bird/Aircraft Collision Problem, Clemson University, 1974, pp. 491508.
    59. 59)
      • 59. Spruyt, J.A., van Dorp, P.: ‘Detection of birds by radar’. TNO report, FEL-95-A244, TNO Physics and Electronics Laboratory, 1996.
    60. 60)
    61. 61)
      • 61. Ozcan, A.H., Baykut, S., Sahinkaya, D.S.A., et al: ‘Micro-Doppler effect analysis of single bird and bird flock for linear FMCW radar’. 2012 20th Signal Processing and Communications Applications Conf. (SIU), 2012.
    62. 62)
    63. 63)
      • 63. Torvik, B., Olsen, K.E., Griffiths, H.: ‘K-band radar signature analysis of a flying mallard duck’. 14th Int. Radar Symp. (IRS), Dresden, Germany, 19–21 June 2013, vol. 2, pp. 584591.
    64. 64)
    65. 65)
    66. 66)
    67. 67)
      • 67. Erol, B., Karabacak, C., Gurbuz, S.Z., et al: ‘Simulation of human micro-Doppler signatures with kinect sensor’. IEEE Radar Conf., 2014, pp. 08630868.
    68. 68)
      • 68. Bjorklund, S., Petersson, H., Nezirovic, A., et al: ‘Millimeter-wave radar micro-Doppler signatures of human motion’. Proc. of 2011 Int. Radar Symp. (IRS), 2011, pp. 167174.
    69. 69)
      • 69. Tivive, F.C., Bouzerdoum, A., Amin, M.G.: ‘A human gait classification method based on radar Doppler spectrograms’, EURASIP J. Adv. Signal Process. 2010,Article id 389716, 2010.
    70. 70)
    71. 71)
      • 71. van Dorp, P.: ‘Identifying human movements using micro-Doppler features’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 6 in radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    72. 72)
      • 72. Cammenga, Z.A., Smith, G.E., Baker, C.J.: ‘Combined high range resolution and micro-Doppler analysis of human gait’. Proc. of IEEE Radar Conf., 2015, pp. 10381043.
    73. 73)
      • 73. Wang, Y., Fathy, A.E.: ‘Micro-Doppler signatures for intelligent human gait recognition using a UWB impulse radar’. IEEE 2011 Int. Symp. on Antennas and Propagation (APSURSI), 2011, pp. 21032106.
    74. 74)
      • 74. Ghaleb, A., Vignaud, L.: ‘Range and micro-Doppler analysis of human motion using high resolution experimental HYCAM radar’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 4 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    75. 75)
      • 75. Fogle, O.R., Rigling, B.D.: ‘Analysis of human signatures using high-range resolution micro-Doppler radar’ inChen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 3 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    76. 76)
      • 76. Fogle, O.R., Rigling, B.D.: ‘Micro-range/micro-Doppler decomposition of human radar signatures’, IEEE Trans. AES, 2012, 48, (4), pp. 30583072.
    77. 77)
      • 77. Vignaud, L., Ghaleb, A., Le Kernec, J., et al: ‘Radar high resolution range & micro-Doppler analysis of human motions’. Proc. of IEEE 2009 Int. Radar Conf., October 2009, pp. 16, 1216.
    78. 78)
      • 78. Ghaleb, A., Vignaud, L., Nicolas, J.M.: ‘A refine micro-Doppler analysis of pedestrians in ISAR imaging’. Proc. of 2008 Seventh European Conf. on Synthetic Aperture Radar (EUSAR), June 2008, pp. 14, 25.
    79. 79)
      • 79. Garreau, G., Nicolaou, N., Andreou, C., et al: ‘Computationally efficient classification of human transport mode using micro-Doppler signatures’. 2011 45th Annual Conf. on Information Sciences and Systems (CISS), 2011, pp. 14.
    80. 80)
    81. 81)
      • 81. Amin, M.G., Ahmad, F., Zhang, Y.: ‘Human gait recognition with cane assistive device using quadratic time-frequency distributions’, IET Radar Sonar Navig., 2015.
    82. 82)
      • 82. Ricci, R., Balleri, A.: ‘Recognition of humans based on radar micro-Doppler shape spectrum features’, IET Radar Sonar Navig., 2015.
    83. 83)
      • 83. McDonald, M.: ‘Discrimination of human targets for radar surveillance via micro-Doppler characteristics’, IET Radar Sonar Navig., 2015.
    84. 84)
      • 84. Tahmoush, D., Silvious, J.: ‘Human polarimetric micro-Doppler’. Proc. of SPIE, Orlando, vol. 8021, April 2011.
    85. 85)
      • 85. Tahmoush, D., Silvious, J.: ‘Radar measurement of human polarimetric micro-Doppler’, J. Electr. Comput. Eng., 2013, 11.
    86. 86)
    87. 87)
    88. 88)
      • 88. Fioranelli, F., Ritchie, M., Griffiths, H.: ‘Analysis of polarimetric multistatic human micro-Doppler classification of armed/unarmed personnel’. IEEE Radar Conf., 2015 pp. 04320437.
    89. 89)
      • 89. Gulgogan, M.B., Gustafsson, F., Orguner, U., et al: ‘Human gait parameter estimation based on micro-Doppler signatures using particle filters’. IEEE 2011 Int. Conf. on Acoustics, Speech and Signal Process. (ICASSP), 2011, pp. 59405943.
    90. 90)
      • 90. Garreau, G., Andreou, C.M., Andreou, A.G., et al: ‘Gait-based person and gender recognition using micro-Doppler signatures’. IEEE Biomedical Circuits and Systems Conf. (BioCAS), 2011, pp. 444447.
    91. 91)
      • 91. Nanzer, J.A.: ‘Simulations of the millimeter-wave interferometric signature of walking humans’. IEEE 2012 Antennas and Propagation Society Symp. (APSURSI), 2012, pp. 12.
    92. 92)
      • 92. Tekeli, B., Gurbuz, S.Z., Yuksel, M., et al: ‘Classification of human micro-Doppler in radar network’. 2013 IEEE Radar Conf., Ottawa, Canada, 2013.
    93. 93)
      • 93. Tekeli, B., Gurbuz, S.Z., Yuksel, M.: ‘Mutual information of features extracted from human micro-Doppler’. 2013 21st Signal Processing and Communications Applications Conf. (SIU), 2013, pp. 14.
    94. 94)
    95. 95)
      • 95. Gurbuz, S.Z., Erol, B., Cagliyan, B., et al: ‘Operational assessment and adaptive selection of micro-Doppler features’, IET Radar Sonar Navig., 2015.
    96. 96)
      • 96. Anderson, M.G., Rogers, R.L.: ‘Micro-Doppler analysis of multiple frequency continuous wave radar signatures’. Proc. of SPIE, Radar Sensor Technology XI, 2007, vol. 6547, p. 65470A.
    97. 97)
      • 97. Tahmoush, D., Silvious, J., Clark, J.: ‘An UGS radar with micro-Doppler capabilities for wide area persistent surveillance’. Proc. of SPIE, Radar Sensor Technology XIV, 2010, Vol. 7669, p. 766904.
    98. 98)
      • 98. Ram, S.S., Ling, H.: ‘Micro-Doppler signature simulation of computer animated human and animal motion’. IEEE 2008 Antennas and Propagation Society Int. Symp., AP-S, 2008, pp. 14.
    99. 99)
    100. 100)
      • 100. Aho, J., Salmi, J., Koivunen, V.: ‘Adaptive processing and realistic signal propagation modeling for multiantenna vital sign radar’. 2013 IEEE Radar Conf., Ottawa, Canada, 2013.
    101. 101)
      • 101. Li, J., Liu, L., Zeng, Z., et al: ‘Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments’, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2013, PP, (99), pp. 19(IEEE Early Access Article).
    102. 102)
    103. 103)
      • 103. Fletcher, R., Jing Han, J.: ‘Low-cost differential front-end for Doppler radar vital sign monitoring’. Digest of IEEE MTT-S Int. Microwave Symp., 2009, pp. 13251328.
    104. 104)
    105. 105)
      • 105. Lubecke, V.M., Boric-Lubcecke, O., Host-Madsen, A., Fathy, A.E.: ‘Through-the-wall radar life detection and monitoring’. Proc. of 2007 IEEE Microwave Theory and Techniques Symp., Honolulu, HI, 2007, pp. 769772.
    106. 106)
      • 106. Chia, M.Y.W., Leong, S.W., Sim, C.K., Chan, K.M.: ‘Through-wall UWB radar operating within FCC's mask for sensing heart beat and breathing rate’. Proc. of 2005 European Radar Conf., Paris, France, 2005, pp. 267270.
    107. 107)
      • 107. Bugaev, A.S., Chapursky, V.V., Ivashov, S.I., Razevig, V.V., Shyko, A.P., Vasilyev, I.A.: ‘Through wall sensing of human breathing and heart beating by monochromatic radar’. Proc. of 10th Int. Conf. on Ground Penetrating Radar, Delft, the Netherlands, 2004, pp. 291294.
    108. 108)
      • 108. Salmi, J., Luukkonen, O., Koivunen, V.: ‘Continuous wave radar based vital sign estimation: modeling and experiments’. IEEE 2012 Radar Conf., 2012, pp. 564569.
    109. 109)
      • 109. Shirodkar, S., Barua, P., Anuradha, D., et al: ‘Heart-beat detection and ranging through a wall using ultra wide band radar’. Int. Conf. on Communications and Signal Processing (ICCSP), 2011, pp. 579583.
    110. 110)
      • 110. Moulton, M.C., Bischoff, M.L., Benton, C., et al: ‘Micro-Doppler radar signatures of human activity’, SPIE, 2010, 7837, pp. 78370L-178370L-7.
    111. 111)
      • 111. Narayanan, R.M.: ‘Earthquake survivor detection using life signals from radar micro-Doppler’. Proc. of First Int. Conf. on Wireless Technologies for Humanitarian Relief, 2011, pp. 259264.
    112. 112)
      • 112. Chu, T., Roderick, J., Chang, S., et al: ‘A short-range UWB impulse-radio CMOS sensor for human feature detection’. Digest of IEEE 2011 Int. Solid-State Circuits Conf., 2011, pp. 294296.
    113. 113)
      • 113. Chen, V.C., Smith, G.E., Woodbridge, K., Baker, C.J.: ‘Radar micro-Doppler signatures for characterization of human motion’, in Amin, M., (Eds.), ‘Chapter 15, in Through-the-wall radar imaging’ (CRC Press, 2010).
    114. 114)
      • 114. Ram, S.S., Christianson, C., Kim, Y., et al: ‘Simulation and analysis of human micro-Dopplers in through-wall environments’, IEEE Trans. GRS, 2010, 48, (4), pp. 20152023.
    115. 115)
    116. 116)
      • 116. Fairchild, D.P., Narayanan, R.M., Beckel, E.R., et al: ‘Through-the-wall micro-Doppler signatures’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 5 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    117. 117)
      • 117. Liu, X.X.: ‘A study of through-the-wall radar and its application to urban sensing’. PhD thesis, Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, CA, 2009.
    118. 118)
      • 118. Setlur, P.: ‘Statistical algorithms a bounds for moving targets in urban sensing and through-the-wall applications’. PhD thesis, Department of Electrical Engineering, Villanova University, Villanova, PA, 2010.
    119. 119)
      • 119. Chen, P.H., Shastry, M.C., Lai, C.P., et al: ‘A portable real-time digital noise radar system for through-the-wall imaging’, IEEE Trans. GRS, 2012, 50, (10), Part 2, pp. 41234134.
    120. 120)
    121. 121)
      • 121. Smith, G., Baker, C.: ‘Multistatic micro-Doppler signature processing’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds), ‘Chapter 9 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    122. 122)
      • 122. Fioranelli, F., Ritchie, M., Griffiths, H.: ‘Aspect angle dependence and multistatic data fusion for micro-Doppler classification of armed/unarmed personnel’, IET Radar Sonar Navig., 2015.
    123. 123)
      • 123. Fioranelli, F., Ritchie, M., Griffiths, H.: ‘Multistatic human micro-Doppler classification of armed/unarmed personnel’, IET Radar Sonar Navig., 2015, doi: 10.1049/iet-rsn.2014.0360.
    124. 124)
      • 124. Balleri, A., Mehmood, A.: ‘Sonar micro-Doppler signatures: principles and applications’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds), ‘Chapter 11 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    125. 125)
    126. 126)
      • 126. Balleri, A., Woodbridge, K., Chetty, K.: ‘Frequency-agile non-coherent ultrasound radar for collection of micro-Doppler signatures’. IEEE Radar Conf., 2011, pp. 4548.
    127. 127)
      • 127. Zhang, Z., Pouliquen, P., Waxman, A., et al: ‘Acoustic micro-Doppler gait signatures of humans and animals’. 2007 41st Annual Conf. on Information Sciences and Systems, 2007, pp. 627630.
    128. 128)
      • 128. Dura-Bernal, S., Garreau, G., Andreou, C., et al: ‘Human action categorization using ultrasound micro-Doppler signatures’. Proc. of Second Int. Conf. on Human Behavior Understanding, 2011, pp. 1828.
    129. 129)
      • 129. Li, P., Wang, D.C., Wang, L.: ‘Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm’, Signal, Image Video Process., 2011.
    130. 130)
      • 130. Yuan, B., Chen, Z., Xu, S.: ‘Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging’, IEEE Trans. Geosci. Remote Sens., 2013, PP, (99), p. 1.
    131. 131)
      • 131. Stankovic, L., Thayaparan, T., Dakovic, M., et al: ‘Micro-Doppler removal in the radar imaging analysis’, IEEE Trans. AES, 2013, 49, (2), pp. 12341250.
    132. 132)
    133. 133)
      • 133. Li, J., Ling, H.: ‘Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts’, Proc. IEE: Radar Sonar Navig., 2003, 150, (4), pp. 284291.
    134. 134)
      • 134. Stankovic, L., Stankovic, S., Thayaparan, T., et al: ‘Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR: part I – theory’, IET Radar Sonar Navig., 2015.
    135. 135)
      • 135. Stankovic, L., Stankovic, S., Thayaparan, T., et al: ‘Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR: part II – statistical analysis’, IET Radar Sonar Navig., 2015.
    136. 136)
      • 136. Stanković, L., Daković, M., Thayananthan, T., et al: ‘Signal decomposition of micro-Doppler signatures’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 10 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    137. 137)
      • 137. Stankovic, L., Djurovic, I., Thayaparan, T.: ‘Separation of target rigid body and micro-Doppler effects in ISAR imaging’, IEEE Trans. AES, 2006, 42, (4), pp. 14961506.
    138. 138)
      • 138. Zhang, Q., Yeo, T.S., Tan, H.S., et al: ‘Imaging of a moving target with rotating parts based on the Hough transform’, IEEE Trans. GRS, 2008, 46, (1), pp. 291299.
    139. 139)
      • 139. Huang, N.E., Shen, Z., Long, S.R., et al: ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis’, Proc. R. Soc. Lond. A, 1998, 454, pp. 903995.
    140. 140)
      • 140. Bai, X., Xing, M., Zhou, F., et al: ‘Imaging of micromotion targets with rotating parts based on empirical mode decomposition’, IEEE Trans. GRS, 2008, 46, (11), pp. 35143523.
    141. 141)
      • 141. Kong, F., Zhang, Y., Palmer, R.: ‘Radar micro-Doppler signature of wind turbines’ inChen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 12 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    142. 142)
      • 142. Zhang, Y., Nepal, R., Cai, J.: ‘Micro-Doppler radar signature identification within wind turbine clutter based on short-CPI airborne radar observations’, IET Radar Sonar Navig., 2015.
    143. 143)
      • 143. Chen, V.C., Tahmoush, D.: ‘Micro-Doppler signatures of small boats’, in Chen, V.C., Tahmoush, D., Miceli, W.J. (Eds.), ‘Chapter 8 in Radar micro-Doppler signature-processing and applications’, Radar Series 34 (IET, 2014).
    144. 144)
    145. 145)
      • 145. Allen, N., Hines, P.C., Young, V.W., et al: ‘Study on the human ability to aurally discriminate between target echoes and environmental clutter in recordings of incoherent broadband sonar’, J. Accoust. Soc. Am., 2006, 119, (5), (3395).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0118
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0118
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address