access icon free Micro-Doppler radar signature identification within wind turbine clutter based on short-CPI airborne radar observations

An application of machine intelligence technique for the identification of micro-Doppler features from an airborne pulsed-Doppler radar sensor is developed. The key challenges for surveillance mode are the dynamic nature of the wind farm clutters, short-CPI length, and lack of prior information on the specific wind turbine (WT) in the site. The micro-Doppler spectrum segments based on short CPIs are used as the fundamental feature vectors for detection and classification. Both supervised and unsupervised approaches, including artificial neural network and random forest, are applied to airborne plan position indicator scan outputs. A simulator for airborne pulsed-Doppler radar operation over wind farm is used with realistic WT scattering signatures, platform motion impacts as well as the terrain clutter impacts. Based on the clutter identification result, the feasibility of detecting small moving targets in the presence of WT clutter is discussed.

Inspec keywords: airborne radar; radar computing; video surveillance; wind turbines; artificial intelligence; Doppler radar

Other keywords: terrain clutter impacts; wind farm; machine intelligence technique; feature vectors; realistic WT scattering signatures; specific wind turbine; artificial neural network; micro-Doppler features; wind farm clutters; Micro-Doppler radar signature identification; short-CPI airborne radar observations; airborne pulsed-Doppler radar sensor; airborne plan position indicator; wind turbine clutter; short-CPI length; micro-Doppler spectrum segments

Subjects: Electrical engineering computing; Television and video equipment, systems and applications; Wind power plants; Expert systems and other AI software and techniques; Radar equipment, systems and applications

References

    1. 1)
      • 24. Davoust, S., Jehu, A., Bouillet, M., et al: ‘Assessment and optimization of LiDAR measurement availability for wind turbine control’, 2014.
    2. 2)
      • 14. Nai, F., Palmer, R.D., Torres, S.M.: ‘Range-Doppler domain signal processing to mitigate wind turbine clutter’. IEEE Radar Conf. (RADAR), 2011.
    3. 3)
      • 6. Kong, F., Zhang, Y., Palmer, R.: ‘Characterization of micro-Doppler radar signature of commercial wind turbines’, inSPIE Defense + Security’ (International Society for Optics and Photonics, 2014).
    4. 4)
      • 23. Hansen, M.O.: ‘Aerodynamics of wind turbines’ (Routledge, 2013).
    5. 5)
    6. 6)
      • 20. Dunn III, R.J., Bingham, P.T., Charles, A.: ‘Ground moving target indicator radar’, Northrop Grumman Anal. Center Pap., 2004.
    7. 7)
    8. 8)
      • 5. Bhalla, R., Ling, H.: ‘Effect of wind turbine micro-Doppler on Sar and Gmti signatures’, inSPIE Defense + Security’ (International Society for Optics and Photonics, 2014).
    9. 9)
    10. 10)
    11. 11)
      • 7. Uysal, F., Pillai, U., Selesnick, I., et al: ‘Signal decomposition for wind turbine clutter mitigation’. IEEE Radar Conf., 2014.
    12. 12)
    13. 13)
      • 3. Santos, R.M., Correia, L.M., Alves, C., et al: ‘Analysis of wind turbines generators influence in aeronautical radars’. IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2014.
    14. 14)
      • 15. Palmer, R., Le, K., Isom, B.: ‘Wind turbine clutter mitigation using fully adaptive arrays’. Radar Conf., 2008. EuRAD 2008, European, 2008.
    15. 15)
    16. 16)
    17. 17)
      • 19. Skolnik, M.: ‘Radar handbook’ (McGraw-Hill Education, 2008, 3rdedn.).
    18. 18)
      • 26. Dempster, A.P., Laird, N.M., Rubin, D.B.: ‘Maximum likelihood from incomplete data Via the Em algorithm’, J. R. Stat. Soc. B, Methodol., 1977, 39, (1), pp. 138.
    19. 19)
      • 12. Stimson, G.W.: ‘Introduction to airborne radar’ (SciTech Pub., 1998).
    20. 20)
    21. 21)
      • 8. Kong, F.: ‘Wind turbine clutter in weather radar: characterization and mitigation’. PhD Dissertation, University of Oklahoma, 2014.
    22. 22)
    23. 23)
      • 25. Bengio, Y.: ‘Learning deep architectures for Ai’ (Now Publishers, 2009).
    24. 24)
    25. 25)
    26. 26)
      • 1. Kong, F., Zhang, Y., Palmer, R., et al: ‘Wind turbine radar signature characterization by laboratory measurements’. IEEE Radar Conf. (RADAR), 2011.
    27. 27)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2015.0111
Loading

Related content

content/journals/10.1049/iet-rsn.2015.0111
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading