access icon free Sea clutter suppression and micromotion marine target detection via radon-linear canonical ambiguity function

The micro-Doppler (m-D) signature of a marine target is used for detection within sea clutter in this study. The marine target usually has translational and rotational motions, and the corresponding radar returns can be modelled as a quadratic frequency modulated signal over a period of time. To compensate the range walk and Doppler migration of the micromotion target simultaneously, a novel long-time coherent integration detection algorithm, that is, Radon-linear canonical ambiguity function (RLCAF), is proposed. It has been proved that the m-D signal can be well matched and accumulated in the RLCAF domain using the long-time instantaneous autocorrelation function and associated with the parameterisation of the linear canonical transform. Furthermore, to suppress sea clutter and improve signal-to-clutter ratio, the authors propose a RLCAF spectrum subtraction method using the different properties of RLCAF representations between the target and sea clutter. Finally, experiments with real radar dataset indicate that the proposed method can achieve better integration and detection performance of a marine target with micromotion in case of high sea state.

Inspec keywords: object detection; radar clutter; FM radar; transforms; Doppler radar; radon; interference suppression; radar detection; correlation methods; marine radar

Other keywords: long-time coherent integration detection algorithm; rotational motion; microDoppler signature; spectrum subtraction method; linear canonical transform; RLCAF; sea clutter suppression; Doppler migration; signal-to-clutter ratio; translational motion; radar return; mD signature; long-time instantaneous autocorrelation function; quadratic frequency modulated signal; range walk compensation; micromotion marine target detection; radon-linear canonical ambiguity function

Subjects: Signal detection; Electromagnetic compatibility and interference; Radar equipment, systems and applications; Integral transforms

References

    1. 1)
      • 6. Guan, J., Liu, N.B., Zhang, J., Song, J.: ‘Multifractal correlation characteristic for radar detecting low-observable target in sea clutter’, Signal Process., 2010, 90, (2), pp. 10231031.
    2. 2)
      • 23. Wind, H.J.de., Cilliers, J.C., Herselman, P.L.: ‘DataWare: sea clutter and small boat radar reflectivity database’, IEEE Signal Process. Mag., 2010, 27, (2), pp. 145148.
    3. 3)
      • 26. Misiurewicz, J., Kulpa, K.S., Czekała, Z., Filipek, T.A.: ‘Radar detection of helicopters with application of CLEAN method’, IEEE Trans. Aerosp. Electron. Syst., 2012, 48, (4), pp. 35253537.
    4. 4)
      • 21. Chen, X.L., Guan, J., Liu, N.B., Zhou, W., He, Y.: ‘Detection of low observable sea-surface target with micromotion via Radon-linear canonical transform’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (7), pp. 12251229.
    5. 5)
      • 12. Bai, X.R., Xing, M.D., Zhou, F., Lu, G.Y., Bao, Z.: ‘Imaging of micro-motion targets with rotating parts based on empirical-mode decomposition’, IEEE Trans. Geosci. Remote Sens., 2008, 46, (11), pp. 35143523.
    6. 6)
      • 2. Ward, K.D., Watts, S.: ‘Use of sea clutter models in radar design and development’, IET Radar Sonar Navig., 2010, 4, (2), pp. 146157.
    7. 7)
      • 16. Lv, X.L., Xing, M.D., Zhang, S.H., Bao, Z.: ‘Keystone transformation of the Wigner–Ville distribution for analysis of multicomponent LFM signals’, Signal Process., 2009, 89, (5), pp. 791806.
    8. 8)
      • 22. Drosopoulos, A.: ‘Description of the OTHR database’. Tech. Rep., Defence Research Establishment, Ottawa, ON Canada, December1994.
    9. 9)
      • 17. Barbarossa, S., Scaglione, A., Giannakis, G.B.: ‘Product high-order ambiguity function for multicomponent polynomial-phase signal modeling’, IEEE Trans. Signal Process., 1998, 46, (3), pp. 691708.
    10. 10)
      • 25. Guida, M., Longo, M., Lops, M.: ‘Biparametric CFAR procedures for lognormal clutter’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 798809.
    11. 11)
      • 19. Che, T.W., Li, B.Z., Xu, T.Z.: ‘The ambiguity function associated with the linear canonical transform’, EURASIP J. Adv. Signal Process., 2012, Article ID 138.
    12. 12)
      • 10. Chen, X.L., Guan, J., Bao, Z.H., He, Y.: ‘Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (3), pp. 10021018.
    13. 13)
      • 13. Luo, Y., Zhang, Q., Qiu, C.W., Li, S., Yeo, T.S.: ‘Micro-Doppler feature extraction for wideband imaging radar based on complex image orthogonal matching pursuit decomposition’, IET Radar Sonar Navig., 2013, 7, (8), pp. 914924.
    14. 14)
      • 5. Luo, F., Zhang, D.T., Zhang, B.: ‘The fractal properties of sea clutter and their applications in maritime target detection’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (6), pp. 12951299.
    15. 15)
      • 1. Shi, Y.L., Shui, P.L.: ‘Target detection in high-resolution sea clutter via block-adaptive clutter suppression’, IET Radar Sonar Navig., 2011, 5, (1), pp. 4857.
    16. 16)
      • 7. Panagopoulos, S., Soraghan, J.J.: ‘Small-target detection in sea clutter’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (7), pp. 13551361.
    17. 17)
      • 15. Pang, C.S., Shan, T., Tao, R., Zhang, N.: ‘Detection of high-speed and accelerated target based on the linear frequency modulation radar’, IET Radar Sonar Navig., 2014, 8, (1), pp. 3747.
    18. 18)
      • 14. Xu, J., Yu, J., Peng, Y.N., Xia, X.G.: ‘Radon-Fourier transform for radar target detection, I: generalized Doppler filter bank’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (2), pp. 11861202.
    19. 19)
      • 20. Chen, X.L., Guan, J., Liu, N.B., He, Y.: ‘Maneuvering target detection via Radon-Fractional Fourier transform-based long-time coherent integration’, IEEE Trans. Signal Process., 2014, 62, (4), pp. 939953.
    20. 20)
      • 9. Chen, V.C., Li, F.Y., Ho, S.S., Wechsler, H.: ‘Micro-Doppler effect in radar: phenomenon, model, and simulation study’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 221.
    21. 21)
      • 18. Tao, R., Song, Y.E., Wang, Z.J., Wang, Y.: ‘Ambiguity function based on the linear canonical transform’, IET Signal Process., 2012, 6, (6), pp. 568576.
    22. 22)
      • 3. Javier, C.M., Javier, G.M., Álvaro, B.C., Alberto, A.L.: ‘Statistical analysis of a high-resolution sea-clutter database’, IEEE Trans. Geosci. Remote Sens., 2009, 47, (11), pp. 20242038.
    23. 23)
      • 4. Erfanian, S., Vakili, V.T.: ‘Introducing excision switching-CFAR in K distributed sea clutter’, Signal Process., 2009, 89, (6), pp. 10231031.
    24. 24)
      • 11. Wang, C., Wang, Y., Li, S.B.: ‘Inverse synthetic aperture radar imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model’, IET Radar Sonar Navig., 2013, 7, (9), pp. 9941003.
    25. 25)
      • 8. Chen, X.L., Guan, J., He, Y., Zhang, J.: ‘Detection of low observable moving target in sea clutter via fractal characteristics in FRFT domain’, IET Radar Sonar Navig., 2013, 7, (6), pp. 635651.
    26. 26)
      • 24. Rao, X., Tao, H.H., Su, J., Guo, X.L., Zhang, J.Z.: ‘Axis rotation MTD algorithm for weak target detection’, Digital Signal Process., 2014, 26, pp. 8186.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2014.0318
Loading

Related content

content/journals/10.1049/iet-rsn.2014.0318
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading