© The Institution of Engineering and Technology
Power minimisation approach is an effective interference suppression algorithm for satellite navigation systems. It forms automatically deep nulls in the directionofarrival (DOA) of interferences without prior information about the DOAs of satellite signals and interferences. However, it cannot provide flat gains for other directions. Thus, the desired satellite signals may be partly suppressed when they locate in the shallow nulls. By combining eigenvalue thresholding method and l1norm constraint, a new interference suppression algorithm is proposed for satellite navigation systems that would provide approximately flat gains in all directions except that of interferences. However, the l1norm constraint leads to a nonsmooth optimisation problem which cannot be solved by the conventional gradientbased algorithm. After that, by utilising the proximal operator, an iterative algorithm is proposed. The simulations demonstrate the effectiveness of the proposed algorithm.
References


1)

1. Jay, R.S.: ‘Interference mitigation approaches for the global positioning system’, Lincoln Lab. J., 2003, 14, (2), pp. 489–509.

2)

2. Borio, D., Camoriano, L., Lo Presti, L.: ‘Twopole and multipole notch filters: a computationally effective solution for GNSS interference detection and mitigation’, IEEE Syst. J., 2008, 2, (1), pp. 38–47 (doi: 10.1109/JSYST.2007.914780).

3)

3. Johan, M.: ‘Robust navigation with GPS/INS and adaptive beamforming’. Swedish Defence Research Agency System Technology Division, 2003, .

4)

W. Sun ,
M.G. Amin
.
A selfcoherence antijamming GPS receiver.
IEEE Trans. Signal Process.
,
10 ,
3910 
3915

5)

5. Sun, W., Amin, M.G.: ‘A novel interference suppression scheme for global navigation satellite systems using antenna array’, IEEE J. Sel. Areas Commun., 2005, 36, pp. 999–1012.

6)

R.L. Fante ,
J.J. Vaccaro
.
Wideband cancellation of interference in a GPS receive array.
IEEE Trans. Aerosp. Electron. Syst.
,
2 ,
549 
564

7)

7. Wu, R.B., Li, C., Lu, D.: ‘Power minimization with derivative constraints for high dynamic GPS interference suppression’, Sci. China Inf. Sci., 2012, 55, (4), pp. 857–866 (doi: 10.1007/s1143201143095).

8)

8. Zoltowski, M.D., Gecan, A.S.: ‘Advanced adaptive null steering concepts for GPS’. Proc. of Military Communications Conf. (MILCOM 1995), 1995, vol. 3, pp. 1214–1218.

9)

9. Harmanci, K., Tabrikian, J., Krolik, J.L.: ‘Relationships between adaptive minimum variance beamforming and optimal source localization’, IEEE Trans. Signal Process., 2000, 48, (1), pp. 1–13 (doi: 10.1109/78.815474).

10)

E. Candès ,
J. Romberg ,
T. Tao
.
Nearoptimal signal recovery from random projections: universal encoding strategies?.
IEEE Trans. Inf. Theory
,
2 ,
489 
509

11)

D. Malioutov ,
M. Çetin ,
A.S. Willsky
.
A sparse signal reconstruction perspective for source localization with sensor arrays.
IEEE Trans. Signal Process.
,
3010 
3022

12)

M. Figueiredo ,
R. Nowak ,
S. Wright
.
Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems.
IEEE J. Sel. Top. Signal Process.
,
4 ,
586 
597

13)

13. Beck, A., Teboulle, M.: ‘Smoothing and first order methods: a unified framework’, SIAM J. Optim., 2012, 22, (2), pp. 557–580 (doi: 10.1137/100818327).

14)

47. Nesterov, Y.: ‘Smooth minimization of nonsmooth functions’, Math. Program. A, 2005, 1, (103), pp. 127–152 (doi: 10.1007/s1010700405525).

15)

15. Tan, Z., Eldar, Y.C., Beck, A., Nehorai, A.: ‘Smoothing and decomposition for analysis sparse recovery’, IEEE Trans. Signal Process., 2014, 62, (7), pp. 1762–1774 (doi: 10.1109/TSP.2014.2304932).

16)

16. Nesterov, Y.E.: ‘A method for solving the convex programming problem with convergence rate O(1/k2)’, Dokl. Akad. Nauk SSSR, 1983, 269, (3), pp. 543–547.

17)

17. Meurer, M., Konovaltsev, A., Cuntz, M., Hattich, C.: ‘Robust joint multiantenna spoofing detection and attitude estimation using direction assisted multiple hypotheses RAIM’. Proc. of the 25th Int. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, 2012, pp. 3007–3016.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietrsn.2014.0258
Related content
content/journals/10.1049/ietrsn.2014.0258
pub_keyword,iet_inspecKeyword,pub_concept
6
6