© The Institution of Engineering and Technology
A new method for selecting auxiliary channels in reduceddimension space–time adaptive processing (STAP) based on maximum crosscorrelation energy has been proposed for airborne multipleinput multipleoutput radar. It is demonstrated that the proposed algorithm can achieve the same output signaltointerference–noise ratio (SINR) performance as the multistage multiplebeam STAP algorithm which can assure the optimal performance when the number of auxiliary channels is fixed, but the auxiliary channels selecting process of the proposed algorithm is extremely simplified. Hence, the computation complexity is reduced dramatically. Practical considerations dictate that only the minimum number of auxiliary channels [(adaptive degrees of freedom (DoFs)] is required to achieve the desired array performance. The proposed approach can achieve the desired output signaltointerference–noise performance with the minimum number of auxiliary channels. Consequently, the proposed approach can reduce the requirement of the sample support dramatically. It is demonstrated that the SINR loss will be <3 dB when only one channel is selected as the auxiliary channel. Generally, two to three channels are enough even when the clutter covariance matrix is unknown. This will be more obvious advantage when the number of independent and identically distributed secondary samples is limited. The reduction in DoFs can make the proposed approach more suitable for the practical clutter environments.
References


1)

1. Bliss, D.W., Forsythe, K.W.: ‘Multipleinput multipleoutput (MIMO) radar and imaging: degrees of freedom and resolution’. Proc. Asilomar Conf. Signals, Systems, Computers, 2003, vol. 1, pp. 54–59.

2)

2. Forsthe, K.W., Bliss, D.W.: ‘Waveform correlation and optimization issues for MIMO radar’. Proc. Asilomar Conf. Signals, Systems, Computers, 2005, pp. 1306–1310.

3)

3. Rabideau, D.J.: ‘Nonadaptive multipleinput, multipleoutput radar techniques for reducing clutter’, IET Radar Sonar Navig., 2009, 3, (4), pp. 304–313 (doi: 10.1049/ietrsn.2008.0140).

4)

4. Forsythe, K.W., Bliss, D.W.: ‘MIMO radar: concepts, performance enhancements, and applications’, in Li, J., Stoica, P. (Eds.): ‘MIMO radar signal processing’ (Wiley, New York, 2009).

5)

5. Bliss, D.W., Forsythe, K.W., Davis, S.K., et al: ‘GMTI MIMO radar’. Proc. 2009 Int. Waveform Diversity and Design Conf., February 2009, pp. 118–122.

6)

6. Zatman, M.: ‘The applicability of GMTI MIMO radar’. Asilomar, 2010, pp. 2138–2142.

7)

7. Brennan, L.E., Reed, I.S.: ‘Theory of adaptive radar’, IEEE Trans. Aerosp. Electron. Syst., 1973, 9, pp. 237–251 (doi: 10.1109/TAES.1973.309792).

8)

8. Klemm, R.: ‘Adaptive airborne MTI: an auxiliary channel approach’. IEE Proc., 1987, vol. 134, . 3, pp. 269–276.

9)

9. Dipieto, R.C.: ‘Extended factored space–time processing technique for airborne radar’. Proc. 25th Asilomar Conf., Pacific Grove, CA, October 1992, pp. 425–430.

10)

10. Wang, H., Cai, L.: ‘On adaptive spatialtemporal processing for airborne surveillance radar systems’, IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (3), pp. 660–669 (doi: 10.1109/7.303737).

11)

11. Wang, Y.L., Chen, J.W., Bao, Z., Peng, Y.N.: ‘Robust space–time adaptive processing for airborne radar in nonhomogeneous clutter environments’, IEEE Trans. AES, 2003, 39, (1), pp. 70–81.

12)

12. Haimovich, A.M.: ‘An eigencanceler: adaptive radar by eigenanalysis methods’, IEEE Trans. Aerosp. Electron. Syst., 1996, 32, (2), pp. 532–542 (doi: 10.1109/7.489498).

13)

13. Goldstein, J.S., Reed, 1.S.: ‘Reduced rank adaptive filtering’, IEEE Trans. Signal Process., 1997, 45, (2), pp. 492–496 (doi: 10.1109/78.554317).

14)

14. Goldstein, J.S., Reed, I.S.: ‘Theory of partially adaptive radar’, IEEE Trans. Aerosp. Electron. Syst., 1997, 33, (4), pp. 1309–1325 (doi: 10.1109/7.625132).

15)

15. Chen, C.Y., Vaidyanathan, P.P.: ‘MIMO radar space–time adaptive processing using prolate spheroidal wave functions’, IEEE Trans. Signal Process., 2008, 56, (2), pp. 623–635 (doi: 10.1109/TSP.2007.907917).

16)

16. Goldstein, J.S., Reed, I.S., Scharf, L.L.: ‘A multistage representation of the Wiener filter based on orthogonal projections’, IEEE Trans. Inf. Theory, 1998, 44, (7), pp. 2943–4959 (doi: 10.1109/18.737524).

17)

17. Zhang, W., He, Z., Li, J., Liu, H.: ‘Multipleinput multipleoutput radar multistage multiplebeam beamspace reduceddimension space–time adaptive processing’, IET Radar Sonar Navig., 2013, 7, (3), pp. 295–303 (doi: 10.1049/ietrsn.2012.0078).

18)

18. Zhang, W., He, Z., Li, J., et al: ‘A method for finding best channels in beamspace postDoppler reduceddimension STAP’, IEEE Trans. Aerosp. Electron. Syst., 2014, 50, (1), pp. 254–264 (doi: 10.1109/TAES.2013.120145).

19)

19. Deng, H., Himed, B.: ‘A virtual antenna beamforming (VAB) approach for radar systems by using orthogonal coding waveforms’, IEEE Trans. Antennas Propag., 2009, 57, (2), pp. 425–435 (doi: 10.1109/TAP.2008.2011387).

20)

20. Reed, I.S., Mallett, J.D., Brennan, L.E.: ‘Rapid convergence rate in adaptive arrays’, IEEE Trans. Aerosp. Electron. Syst., 1974, AES10, (6), pp. 853–863 (doi: 10.1109/TAES.1974.307893).
http://iet.metastore.ingenta.com/content/journals/10.1049/ietrsn.2014.0226
Related content
content/journals/10.1049/ietrsn.2014.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6