access icon free Emitter selection criteria for passive multistatic synthetic aperture radar imaging

Passive radar provides a means of spectrum sharing in a congested environment. In passive radar, the radar design problem is one of emitter selection, rather than waveform optimisation. This study combines relevant criteria (signal-to-noise ratio, ambiguity function integrated sidelobes, effective multistatic resolution area and contrast ratio) in a multiobjective optimisation to select subsets of available emitters for passive multistatic synthetic aperture radar (SAR). Extensions to well-known monostatic and bistatic performance criteria are defined for the multistatic SAR case. Assumed limitations in the number of available receiver channels constrain the emitter selection. The proposed emitter selection framework is demonstrated for a simulated scenario of 24 analogue and digital emitters, with a constraint of four receiver channels. Results indicate that the proposed ranking successfully differentiates between emitter sets resulting in good images and those sets resulting in poor images, providing a first step towards formulating a general image quality equation for multistatic SAR.

Inspec keywords: radar imaging; radio spectrum management; passive radar; synthetic aperture radar

Other keywords: signal-to-noise ratio; effective multistatic resolution area; image quality equation; multiobjective optimisation; analogue emitters; passive multistatic SAR; receiver channel; contrast ratio; monostatic performance criteria; emitter selection criteria; radar design problem; passive multistatic synthetic aperture radar imaging; digital emitters; ambiguity function integrated sidelobes; waveform optimisation; spectrum sharing; bistatic performance criteria

Subjects: Optical, image and video signal processing; Legislation, frequency allocation and spectrum pollution; Radar equipment, systems and applications

References

    1. 1)
      • 10. Martorella, M., Haywood, B., Nel, W., et al: ‘Optimal sensor placement for multi-bistatic ISAR imaging’. European Radar Conf., 30 September 2010–1 October 2010, pp. 228231.
    2. 2)
      • 13. Irvine, J.M.: ‘National imagery interpretability rating scale (NIIRS)’, Encyclopedia of Optical Engineering, 2003, Vol 1, pp. 14421456.
    3. 3)
      • 15. Nolan, A.R., Goley, G.S., Bakich, M.: ‘Performance estimation of SAR using NIIRS techniques’. Proc. of SPIE, Algorithms for Synthetic Aperture Radar Imagery XIX, May 2012, pp. 83940S.
    4. 4)
      • 16. Willis, N.J.: ‘Bistatic Radar’ (SciTech Publishing, 2005).
    5. 5)
      • 6. Anastasio, V., Colone, F., Di Lallo, A., et al: ‘Optimization of multistatic passive radar geometry based on CRLB with uncertain observations’. European Radar Conf., October 2010, pp. 340343.
    6. 6)
      • 31. 3rd Generation Partnership Project: ‘Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 8)’, September 2008.
    7. 7)
      • 26. Carrara, W.G., Goodman, R.S., Majewski, R.M.: ‘Spotlight Synthetic Aperture Radar: Signal Processing Algorithms’ (Artech House, 1995).
    8. 8)
    9. 9)
      • 34. Evers, A., Jackson, J.A.: ‘Analysis of an LTE waveform for radar applications’. IEEE Radar Conf., Cincinnati, OH, May 2014.
    10. 10)
      • 24. Stevens, S.R.: ‘Metrics for emitter selection for multistatic synthetic aperture radar’. M.S. thesis, Air Force Institute of Technology, September 2013.
    11. 11)
      • 30. Advanced Television Systems Committee: ‘ATSC digital television standard–Part 2: RF/transmission system characteristics’, December 2011, http://www.atsc.org/cms/standards/a53/a_53-Part-2-2011.pdf.
    12. 12)
    13. 13)
      • 17. Woodward, P.M.: ‘Probability and Information Theory, with Applications to Radar’ (Pergamon Press, Oxford, 1953).
    14. 14)
      • 29. Proakis, J.G., Salehi, M.: ‘Communication Systems Engineering’ (Prentice Hall, 2002, 2nd Edn.).
    15. 15)
      • 33. Gutierrez del Arroyo, J.: ‘Passive synthetic aperture radar imaging using commercial OFDM communication networks’. Ph.D. Dissertation, Air Force Institute of Technology, September 2012.
    16. 16)
      • 32. LAN/MAN Standards Committee: ‘IEEE standard for air interface for broadband wireless access systems’. IEEE Std 802.16–2012 (Revision of IEEE Std 802.16–2009), 2012, pp. 12542.
    17. 17)
      • 4. Cohen, L., Daly, E., DeGraaf, J., Scheff, K.: ‘Mitigation of radar interference with WiMAX systems’. Int. Waveform Diversity and Design Conf., 2010, pp. 159164..
    18. 18)
    19. 19)
      • 35. Evers, A., Jackson, J.A.: ‘Experimental passive SAR imaging exploiting LTE, DVB, and DAB signals’. IEEE Radar Conf., Cincinnati, OH, May 2014.
    20. 20)
      • 2. Griffiths, H., Blunt, S., Cohen, L., Savy, L.: ‘Challenge problems in spectrum engineering and waveform diversity’. IEEE Radar Conf., Ottawa, Canada, May 2013, pp. 15.
    21. 21)
    22. 22)
    23. 23)
      • 22. Bradaric, I., Capraro, G.T., Wicks, M.C.: ‘Multistatic ambiguity function–a tool for waveform selection in distributed radar systems’. Int. Waveform Diversity and Design Conf., February 2009, pp. 4044.
    24. 24)
      • 14. Gutchess, D., Irvine, J.M., Young, M., Snorrason, M.S.: ‘Predicting the effectiveness of SAR imagery for target detection’. Proc. of SPIE, Algorithms for Synthetic Aperture Radar Imagery XVIII, vol. 805110, May 2011.
    25. 25)
      • 25. Voccola, K., Yazici, B., Ferrara, M., Cheney, M.: ‘On the relationship between the generalized likelihood ratio test and backprojection for synthetic aperture radar imaging’, Proc. SPIE Autom Target Recognit. XIX, 2009, 733501, (9), pp. 110.
    26. 26)
      • 3. Cordill, B.D., Seguin, S.A., Cohen, L.: ‘Electromagnetic interference to radar receivers due to in-band OFDM communications systems’. 2013 IEEE Int. Symp. on Electromagnetic Compatibility (EMC), 2013, pp. 7275.
    27. 27)
    28. 28)
      • 36. Barott, W.C., Engle, J.: ‘Single-antenna ATSC passive radar observations with remodulation and keystone formatting’. IEEE Radar Conf., Cincinnati, OH, May 2014.
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 7. Fogle, R., Rigling, B.: ‘Optimal geometry designs for unconstrained and topologically-constrained multistatic sensors’. Fortieth Asilomar Conf. on Signals, Systems and Computers, November 2006, pp. 15701574.
    33. 33)
    34. 34)
      • 19. Cherniakov, M.: ‘Bistatic Radar Principles and Practice’ (Wiley, 2007).
    35. 35)
      • 9. Gumiero, F., Nucciarone, C., Anastasio, V., Lombardo, P., Colone, F.: ‘Multistatic passive radar geometry optimization for target 3D positioning accuracy’. European Radar Conf., October 2010, pp. 467470.
    36. 36)
      • 21. Webster, T., Kim, J., Bradaric, I., Cheney, M.: ‘Deterministic and statistical models for multistatic ambiguity functions’. IEEE Radar Conf., Atlanta, GA, May 2012, pp. 02080213.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2014.0014
Loading

Related content

content/journals/10.1049/iet-rsn.2014.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading