http://iet.metastore.ingenta.com
1887

Detection of chaff centroid jamming aided by GPS/INS

Detection of chaff centroid jamming aided by GPS/INS

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Chaff centroid jamming released by vessel makes the target indicated azimuth angle of radar seeker of anti-ship missile bias off the target. The failure to detect the presence of chaff centroid jamming is catastrophic to target tracking for the radar seeker. In this study, the authors take the azimuthal in-phase monopulse ratio of radar seeker as test statistic and detect the presence of chaff centroid jamming with the aid of GPS/INS. Probability density functions of the azimuthal in-phase monopulse ratio when jamming is absent and present are derived at first. Then the authors propose a method using the measured information of both GPS/INS and radar seeker to estimate the target off-boresight azimuth angle which is vital for detection threshold setting. Finally, the authors show the performance of the chaff centroid jamming detection by simulations and analyse the effects of some key jamming parameters on detection performance.

References

    1. 1)
      • 1. Schleher, D.C.: ‘Electronic warfare in the information age’ (Artech House, Norwood, MA, 1999).
    2. 2)
      • 2. Asseo, S.J.: ‘Detection of target multiplicity using quadrature monopulse angle’, IEEE Trans. Aerosp. Electron. Syst., 1981, 17, (2), pp. 504509.
    3. 3)
      • 3. Bogler, P.L.: ‘Detecting the presence of target multiplicity’, IEEE Trans. Aerosp. Electron. Syst., 1986, 22, (2), pp. 197203.
    4. 4)
      • 4. Blair, W.D., Brandt-Pearce, M.: ‘Unresolved Rayleigh target detection using monopulse measurements’, IEEE Trans. Aerosp. Electron. Syst., 1998, 34, (2), pp. 543552.
    5. 5)
      • 5. Li, C.W., Wang, H.Q., Li, X., Zhuang, Z.W.: ‘Study on the detection of the multiple unresolved targets’, J. Syst. Eng. Electron., 2005, 16, (2), pp. 295300.
    6. 6)
      • 6. Zhang, X., Willett, P., Bar-Shalom, Y.: ‘Detection and localization of multiple unresolved extended targets via monopulse radar signal processing’, IEEE Trans. Aerosp. Electron. Syst., 2009, 45, (2), pp. 455472.
    7. 7)
      • 7. Nandakumaran, N., Sinha, A., Kirubarajan, T.: ‘Joint detection and tracking of unresolved targets with monopulse radar’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (4), pp. 13261341.
    8. 8)
      • 8. Isaac, A., Willett, P., Bar-Shalom, Y.: ‘Quickest detection and tracking of spawning targets using monopulse radar channel signals’, IEEE Trans. Signal Process., 2008, 56, (3), pp. 13021308.
    9. 9)
      • 9. Chaumette, E., Larzabal, P.: ‘Monopulse-radar tracking of Swerling III–IV targets using multiple observations’, IEEE Trans. Aerosp. Electron. Syst., 2008, 44, (2), pp. 377387.
    10. 10)
      • 10. Nikkle, U.R.O., Chaumette, E., Larzabal, P.: ‘Statistical performance prediction of generalized monopulse estimation’, IEEE Trans. Aerosp. Electron. Syst., 2011, 47, (1), pp. 381404.
    11. 11)
      • 11. Farrell, J.A., Givargis, T.D., Barth, M.J.: ‘Real-time differential carrier phase GPS-aided INS’, IEEE Trans. Control Syst. Technol., 2000, 8, (4), pp. 709721.
    12. 12)
      • 12. Ohlmeyer, E.J., Phillips, C.A., Bibel, J.E.: ‘Guidance and navigation system design for a ship self defense missile’. Proc. AIAA Guid., Navig., Control Conf. on Exhib., Keystone, CO, USA, August 2006, pp. 47924807.
    13. 13)
      • 13. Ohlmeyer, E.J., Pepitone, T.R., Miller, B.L.: ‘Assessment of integrated GPS/INS for the EX-171 extended range guided munition’. Proc. AIAA Guid., Navig., Control Conf. on Exhib., Boston, MA, USA, August 1998, pp. 13741389.
    14. 14)
      • 14. Ohlmeyer, E.J., Pepitone, T.R., Miller, B.L.: ‘GPS-aided navigation system requirements for smart munitions and guided missiles’. Proc. AIAA Guid., Navig., Control Conf., New Orleans, LA, USA, August 1997, pp. 954968.
    15. 15)
      • 15. Lai, Q.F., Zhao, J., Dai, H.Y., Zhang, W.M.: ‘Precision inertial navigation system aiding for terminal radar seeker application’. Proc. Int. Radar Conf., Guilin, China, April 2009, pp. 21032106.
    16. 16)
      • 16. Gao, F.: ‘Signal processing technology for Doppler radar seekers’ (National Defense Industry Press, Beijing, 2001) (in Chinese).
    17. 17)
      • 17. Huang, P.K., Yin, H.C., Xu, X.J.: ‘Radar target characteristic’ (Publishing House of Electronics Industry, Beijing, 2005) (in Chinese).
    18. 18)
      • 18. Chen, J.: ‘Principles of radar chaff jamming’ (National Defense Industry Press, Beijing, 2008) (in Chinese).
    19. 19)
      • 19. Sinha, A., Kirubarajan, T., Bar-Shalom, Y.: ‘Maximum likelihood angle extractor for two closely spaced targets’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (1), pp. 183203.
    20. 20)
      • 20. Long, M.W.: ‘Radar reflectivity of land and sea’ (Artech House, Norwood, MA, 2001, 3rd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2012.0101
Loading

Related content

content/journals/10.1049/iet-rsn.2012.0101
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address