Range autofocus for linearly frequency-modulated continuous wave radar

Access Full Text

Range autofocus for linearly frequency-modulated continuous wave radar

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Radar, Sonar & Navigation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A software-based method for estimating and compensating for chirp non-linearity in frequency-modulated continuous wave radars is described. The method is based on the phase-gradient algorithm and time-domain warping of the dechirped signal. The method is demonstrated both on typically and severely non-linear chirps. The retrospective application is demonstrated on archive radar data.

Inspec keywords: electrical engineering computing; radar signal processing; time-domain analysis; gradient methods; CW radar; FM radar

Other keywords: range autofocus; software-based method; phase-gradient algorithm; linearly frequency-modulated continuous wave radar; time-domain warping; chirp nonlinearity

Subjects: Signal processing and detection; Digital signal processing; Optimisation techniques; Interpolation and function approximation (numerical analysis); Electrical engineering computing; Optimisation techniques; Radar equipment, systems and applications; Interpolation and function approximation (numerical analysis)

References

    1. 1)
    2. 2)
      • Beasley, P.D.L.: `Coherent frequency modulated continuous wave radar', 2006/103391 A1, 2006, World Patent WO.
    3. 3)
      • Macfarlane, D.G., Robertson, D.A.: `Long range, high resolution 94 GHz FMCW imaging radar (AVTIS)', Proc. Int. Conf. IRMMW-THz, September 2005, Karlsruhe, Germany, 1, p. 201–202.
    4. 4)
    5. 5)
      • Robertson, D.A., Macfarlane, D.G.: `A 94 GHz real aperture 3D imaging radar', Proc. EuRAD, September 2006, Manchester, England, p. 154–157.
    6. 6)
      • Middleton, R.J.C., Robertson, D.A.: `Predicting range point response from chirp non-linearity', Int. Radar Conf., September 2008, Adelaide, Australia, p. 128–132.
    7. 7)
      • Musch, T., Rolfes, I., Schiek, B.: `Fractional divider concepts with phase-lock-control for the generation of precise linear frequency ramps', 28thEuropean Microwave Conf., October 1998, 1, p. 451–456.
    8. 8)
      • Burke, P.J.: `Ultra-linear chirp generation via VCO tuning predistortion', Proc. IEEE MTT-S, May 1994, Munich, Germany, 2, p. 957–960.
    9. 9)
      • C.V. Jakowatz , D.E. Wahl , P.H. Eichel , D.C. Ghiglia , P.A. Thompson . (1996) Spotlight-mode synthetic aperture radar: a signal processing approach.
    10. 10)
    11. 11)
      • Fuchs, J., Ward, K.D., Tulin, M.P., York, R.A.: `Simple techniques to correct for VCO nonlinearities in short range FMCW radars', Proc. IEEE MTT-S, June 1996, California, USA, 2, p. 1175–1178.
    12. 12)
    13. 13)
      • Robertson, D.A., Middleton, R.J.C., Macfarlane, D.G.: `A 94 GHz FMCW instrumentation radar', Proc. IRMMW-THz Cardiff, Wales, 2007, p. 919–921.
    14. 14)
      • Pichler, M., Stelzer, A., Gulden, P., Vossiek, M.: `Influence of systematic frequency-sweep non-linearity on object distance estimation in FMCW/FSCW radar systems', Proc. 33rd European Microwave Conf., October 2003, Munich, Germany, 3, p. 1203–1206.
    15. 15)
      • Wagner, C., Stelzer, A., Jager, H.: `PLL architecture for 77-GHz FMCW radar systems with highly-linear ultra-wideband frequency sweeps', Proc. IEEE MTT-S, June 2006, San Fransisco, USA, p. 399–402.
    16. 16)
      • Meta, A., Hoogeboom, P., Ligthart, L.P.: `Range non-linearities correction in FMCW SAR', IEEE IGARRS Int. Conf., 2006, p. 403–406.
    17. 17)
      • J.R. Klauder , A.C. Price , S. Darlington , W.J. Albersheim . The theory and design of chirp radars. Bell Syst. Techn. J. , 4 , 745 - 808
    18. 18)
      • Stove, A.G.: `Linearizing a swept frequency radar', European, Application 0 501 566 A1, 1993.
    19. 19)
      • Christmann, M., Vossiek, M., Smith, M., Rodet, G.: `SAW-based delay locked loop concept for VCO linearization in radar sensors', Proc. 33rd European Microwave Conf., October 2003, Munich, Germany, 3, p. 1135–1138.
    20. 20)
    21. 21)
      • Scheiblhofer, S., Schuster, S., Stelzer, A.: `Effects of systematic FMCW radar sweep nonlinearity on bias and variance of target range estimation', Proc. IEEE MTT-S, June 2006, San Fransisco, USA, p. 1418–1421.
    22. 22)
      • H. Li , H-M. Rein , T. Suttorp , J. Bock . Fully integrated SiGe VCOs with powerful output buffer for 77 GHz automotive radar systems and applications around 100 GHz. IEEE J. Solid-State Circuits , 10 , 1650 - 1658
    23. 23)
      • Vossiek, M., Heide, P., Nalezinski, M., Magori, V.: `Novel FMCW radar system concept with adaptive compensation of phase errors', Proc. 26th European Microwave Conf., September 1996, Prague, Czech Republic, 1, p. 135–139.
    24. 24)
      • Robertson, D.A., Macfarlane, D.G.: `AVTIS: all-weather volcano topography imaging sensor', Proc. 29th Int. Conf. Infrared and Millimeter Waves, September 2004, Karlsruhe, Germany, p. 813–814.
    25. 25)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rsn.2010.0097
Loading

Related content

content/journals/10.1049/iet-rsn.2010.0097
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading