Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Optimal gain-scheduled control of fixed-speed active stall wind turbines

Optimal gain-scheduled control of fixed-speed active stall wind turbines

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For a smooth integration of large wind farms into the utility grids, the individual wind turbines must be able to achieve various power control objectives. In this context, the authors focus their attention on the control of fixed-speed active stall wind turbines. This sort of turbine includes a pitch servomechanism to induce stall on the blades, thereby having control on the output power. The authors develop a methodology to design optimal gain-scheduled pitch controllers valid for the whole operating region of the wind turbine. The proposed solution uses concepts of linear parameter-varying system theory. In addition to providing a formal framework for the control design, this theory guarantees stability and performance. Further, because of the similarities with ℋ control, the tools developed for the controller design are very familiar to the control community. The main features of the proposed controller are assessed by means of numerical simulations obtained for realistic wind speed profiles and power production demands.

References

    1. 1)
      • F. Bianchi , R. Mantz , C. Christiansen . Control of variable-speed wind turbines by LPV gain scheduling. Wind Energy , 1 , 1 - 8
    2. 2)
      • F. Bianchi , H. De Battista , R. Mantz . (2006) Wind turbine control systems: principles, modelling and gain scheduling design.
    3. 3)
      • FERC: ‘Interconnection for wind energy’, Docket No. RM05-4-00. Order No. 661, 2005, Available at: http://www.ferc.gov.
    4. 4)
      • A. Hansen , L. Hansen . Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy , 81 - 97
    5. 5)
      • Akhmatov, V.: `Analysis of dynamic behaviour of electric power systems with large amount of wind power', 2003, PhD, Technical University of Denmark.
    6. 6)
      • Rudion, K., Orths, A., Lebioda, A., Styczynski, Z.: `Wind farms with DFIG as virtual power plants', Proc. 5th Int. Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, 2005, Glasgow, Scotland.
    7. 7)
      • T. Burton , D. Sharpe , N. Jenkins . (2001) Wind energy handbook.
    8. 8)
      • J. Sturm . Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method Softw. , 625 - 653
    9. 9)
      • Lescher, F., Zhao, J., Martínez, A.: `Multiobjective ', Proc. Int. Conf. Renewable Energy Power Quality ICREPQ′06, 2006, Palma, Spain, p. 248.
    10. 10)
      • (2005) Electrical guide to utility scale wind turbines.
    11. 11)
      • E. Muhando , T. Senjyu , N. Urasaki , A. Yona , H. Kinjo , T. Funabashi . Gain scheduling control of variable speed WTG under widely varying turbulence loading. Renew. Energy , 14 , 2407 - 2423
    12. 12)
      • F. Wu , X. Yang , A. Packard , G. Becker . Induced ℒ2-norm control for LPV systems with bounded parameter variations rates. Int. J. Robust Nonlinear Control , 983 - 998
    13. 13)
      • P. Apkarian , R.J. Adams . Advanced gain-scheduling techniques for uncertain systems. IEEE Trans. Control Syst. Technol. , 1 , 21 - 32
    14. 14)
      • D. Leith , W. Leithead . Appropriate realization of gain scheduled controllers with application to wind turbine regulation. Int. J. Control , 2 , 223 - 248
    15. 15)
      • R. Sanchez-Peña , M. Sznaier . (1998) Robust systems. Theory and applications.
    16. 16)
      • R. Zavadil , N. Miller , A. Ellis , E. Muljadi . Making connections. IEEE Power Energy Mag. , 6 , 26 - 37
    17. 17)
      • P. Sørensen , A. Hansen , F. Iov , F. Blaabjerg , M. Donovan . (2005) Wind farm models and control strategies.
    18. 18)
      • Ohtsubo, K., Kahiwara, H.: `LPV techniques for rotational speed control of wind turbines using measured wind speed', Proc. MTS/IEEE Techno-Ocean′04, 2004, Kobe, Japan, 4, p. 1847–1853.
    19. 19)
      • EWEA: ‘Large scale integration of wind energy in the european power supply: analysis, issues and recommendations’ (EWEA 051215, 2005).
    20. 20)
      • J.S. Shamma , M. Athans . Guaranteed properties of gain scheduled control for linear parameter-varying plants. Automatica , 3 , 559 - 564
    21. 21)
      • F. Bianchi , R. Mantz , C. Christiansen . Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models. Control Eng. Pract. , 2 , 247 - 255
    22. 22)
      • A. Tapia , G. Tapia , J.X. Ostolaza . Reactive power control of windfarms for voltage control applications. Renew. Energy , 377 - 392
    23. 23)
      • J. Jensen . (2002) Towards a wind energy power plant.
    24. 24)
      • A. Hansen , C. Jauch , P. Sørensen , F. Iov , F. Blaabjerg . (2003) Dynamic wind turbine models in power system simulation tool DIgSILENT.
    25. 25)
      • W. Leithead , B. Connor . Control of variable speed wind turbines: dynamic models. Int. J. Control , 13 , 1173 - 1189
    26. 26)
      • T. Ackermann . (2005) Wind power in power systems.
    27. 27)
      • A. Hansen , P. Sørensen , F. Iov , F. Blaabjerg . Centralised power control of wind farm with doubly fed induction generators. Renew. Energy , 7 , 935 - 951
    28. 28)
      • F. Hughes , O. Anaya-Lara , N. Jenkins , G. Strbac . Control of DFIG-based wind generation for power network support. IEEE Trans. Power Syst. , 4 , 1958 - 1966
    29. 29)
      • ELKRAFT Systems, ELTRA.: ‘Wind turbines connected to grids with voltages above 100 kV’, 2004, TF 3.2.5, Available at: http://www.eltra.dk.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg_20070106
Loading

Related content

content/journals/10.1049/iet-rpg_20070106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address