Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Load flow analysis for variable speed offshore wind farms

Load flow analysis for variable speed offshore wind farms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A serial AC–DC integrated load flow algorithm for variable speed offshore wind farms is proposed. It divides the electrical system of a wind farm into several local networks, and different load flow methods are used for these local networks sequentially. This method is fast, more accurate, and many factors such as the different wind farm configurations, the control of wind turbines and the power losses of pulse width modulation converters are considered. The DC/DC converter model is proposed and integrated into load flow algorithm by modifying the Jacobian matrix. Two iterative methods are proposed and integrated into the load flow algorithm: one takes into account the control strategy of converters and the other considers the power losses of converters. In addition, different types of variable speed wind turbine systems with different control methods are investigated. Finally, the method is demonstrated using an 80-MW offshore wind farm.

References

    1. 1)
    2. 2)
      • T. Smed , G. Anderson , G.B. Sheble , L.L. Grgsby . A new approach to AC/DC power flow. IEEE Trans. Power Appar. Syst. , 3 , 1238 - 1244
    3. 3)
      • Sanghavi, H.A., Banerjee, S.K.: `Load flow analysis of integrated AC–DC power systems', TENCON'89. Fourth IEEE Region 10 International Conference, 1989, p. 746–751.
    4. 4)
      • C. Angeles-Camacho , O.L. Tortelli , E. Acha , C.R. Fuerte-Esquive . Inclusion of a high voltage DC-voltage source converter model in a Newton–Raphson power flow algorithm. Proc. IEE Gener. Transm. Distrib. , 6 , 691 - 696
    5. 5)
      • J.G. Slootweg , H. Polinder , W.L. Kling . Initialization of wind turbine models in power system dynamics simulations. Power Tech Proc. , 1 - 6
    6. 6)
    7. 7)
      • Abrahamsen, F.: `Energy optimal control of induction motor drives', February 2000, PhD, Aalborg University, Institute of Energy Technology, Aalborg, Denmark.
    8. 8)
      • Arrillaga, J., Smith, B.: `AC–DC power system analysis', IEE Power and Energy Series 27, (IEE) ISBN 0 85296 934 1.
    9. 9)
      • H. Fudeh , C.M. Ong . A simple and efficient AC–DC load flow method for multiterminal DC system. IEEE Trans. Power Appar. Syst. , 11 , 4389 - 4396
    10. 10)
      • K.R. Padiyar , V. Kalyanarman . Power flow analysis in MTDC–AC system – a new approach. Electric Mach. Power Syst. , 271 - 288
    11. 11)
      • L.K. Mestha , P.D. Evans . Analysis of on-state losses in pwm inverters. IEE Proc. B (Electric Power Appl.) , 4 , 189 - 195
    12. 12)
    13. 13)
      • Grauers, A., Lindskog, A.: `PM generator with series compensated diode rectifier', NORPIE 2000, Aalborg, Denmark, p. 59–63.
    14. 14)
      • Ding, Q.F., Zhang, B.M.: `A new approach to AC/MTDC power flow', Proc. APSCOM-97, November 1997, Hong Kong, p. 689–694.
    15. 15)
      • J. Arrillaga , C.P. Harnold , B.J. Harker . (1990) Computer analysis of power systems.
    16. 16)
    17. 17)
      • J. Arrillaga , P. Bodger . Integration of HVDC links with fast decoupled load flow solutions. Proc. IEE , 5 , 463 - 468
    18. 18)
      • Fan, Y.K., Niebur, D., Nwankpa, C.O.: `Multiple power flow solutions of small integrated AC/DC power systems', Proc. ISCAS 2000, 2, p. 224–227.
    19. 19)
      • F. Blaabjerg , Z. Chen , S.B. Kjaer . Power electronics as efficient interface of renewable energy sources. IEEE Transact. PE , 5 , 1184 - 1194
    20. 20)
    21. 21)
      • Pierik J.T.G., Damen M., Bauer P., de Haan S.W.H.: ‘Electrical and control aspects of offshore wind farms. Phase 1: steady state electrical design, power performance and economic modeling. Volume 1: project results’. Rapport aan: ECN. Uitgave: Energy research Centre of the Netherlands ECN, Petten, 2001, 110 p. Rapportnummer: ECN-CX–01-083, cat. h, Projectcode: ET01-14.
    22. 22)
      • Blaabjerg, F., Pedersen, J.K., Sigurjonsson, S., Elkjaer, A.: `An extended model of power losses in hard-switched IGBT-inverters', Proc. Conf. IAS 96, October 1996, 3, p. 1454–1463.
    23. 23)
      • Mustafa, M.W., Kadir, A.F.A.: `A modified approach for load flow analysis of integrated AC–DC power systems', Proc. TENCON 2000, 2000, 2, p. 108–113.
    24. 24)
      • M.R. Irving , M.J.H. Sterling . Efficient Newton–Raphson algorithm for load flow calculations in transmission and distribution networks. IEE Proc. C Gener. Trans. Distrib. , 5 , 325 - 330
    25. 25)
      • Khater, F.M.H.: `Power electronics in wind energy conversion systems', Proc. IECEC 96, 3, p. 1773–1776.
    26. 26)
      • J. Reeve , G. Fahmy , B. Stott . Versatile load flow method for multiterminal HVDC system. IEEE Trans. Power Appar. Syst. , 3 , 925 - 933
    27. 27)
      • Zhao, M., Chen, Z., Blaabjerg, F.: `Modeling of DC/DC converter for DC load flow calculation', Proc. Conf. EPE-PEMC, 2006, p. 561–566.
    28. 28)
      • Blaabjerg, F., Pedersen, J.K., Jaeger, U.: `Evaluation of modern IGBT-modules for hard-switched AC/DC/AC converters', Industry Applications Conference, IAS'95, Conference Record of the 1995 IEEE, 2, p. 997–1005.
    29. 29)
      • D.A. Braunagel , L.A. Kraft , J.L. Whysong . Inclusion of DC converter and transmission equations directly in a Newton power flow. IEEE Trans. Power Apparatus Syst. , 1 , 76 - 88
    30. 30)
    31. 31)
      • Lundberg, S.: `Performance comparison of wind park configurations', 30R, Technical, 2003, Chalmers University of Technology, Department of Electric Power Engineering, Göteborg, Sweden.
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg_20070094
Loading

Related content

content/journals/10.1049/iet-rpg_20070094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address