Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Wind-photovoltaic capacity coordination for a time-of-use rate industrial user

Wind-photovoltaic capacity coordination for a time-of-use rate industrial user

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As the capacity of wind and photovoltaic (PV) generation systems increases, wind-PV capacity coordination for a time-of-use (TOU) rate industrial user may become an important problem. This coordination can maximise the economic benefits of investing in a wind generation system and a PV generation system. An evolutionary particle swarm optimisation approach to solve the wind-PV capacity coordination for a TOU rate industrial user is proposed. A benefit-cost ratio (BCR) is used to evaluate the economic benefit of investing in wind and PV generation systems for a TOU rate industrial user. The optimal contract capacities and the optimal installed capacities of the wind and PV generation systems for a TOU rate industrial user are obtained. The BCR of investing in wind and PV generation systems are maximised. Test results illustrate the merits of the proposed approach and help determine the impact of changes in electricity cost and capital cost on wind-PV capacity coordination for a TOU rate industrial user.

References

    1. 1)
      • L. Ntziachristos , C. Kouridis , Z. Samaras , K. Pattas . A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid. Renew. Energy , 1471 - 1487
    2. 2)
      • C.F. Wu , J.X. Zhang , Y.K. Chen . (2003) Illumination and solar energy.
    3. 3)
      • National Renewable Energy Laboratory, U.S.: ‘HOMER the optimization model for distributed power-getting started guide v2.0’, May 2003.
    4. 4)
      • http://www.gramjuhl.dk/uploads/file/The_Cost_of_WP.pdf.
    5. 5)
      • D.B. Fogel . (2000) Evolutionary computation: toward a new philosophy of machine intelligence.
    6. 6)
      • Gupta, A., Saini, R.P., Sharma, M.P.: `Economic aspects of hybrid renewable energy systems for remote area', IEEE Int. Conf. Industrial Technology, December 2006, p. 1706–1710.
    7. 7)
      • R. Billinton , R. Karki . Capacity expansion of small isolated power systems using PV and wind energy. IEEE Trans. Power Syst. , 4 , 892 - 897
    8. 8)
      • S.M. Shaahid , M.A. Elhadidy . Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions–a step to clean future. Renew. Sustain. Energy Rev. , 488 - 503
    9. 9)
      • A. Dudhani , A.K. Sinha , S.S. Inamdar . Renewable energy sources for peak load demand management in India. Electr. Power Energy Syst. , 396 - 400
    10. 10)
      • T.Y. Lee . Operating schedule of battery energy storage system in a time-of-use rate industrial user with wind turbine generators: a multi-pass iteration particle swarm optimization approach. IEEE Trans. Energy Convers. , 3 , 774 - 782
    11. 11)
      • T.Y. Lee , N. Chen . Determination of optimal contract capacities and optimal sizes of battery energy. storage systems for time-of-use rates industrial customers. IEEE Trans. Energy Convers. , 3 , 562 - 568
    12. 12)
      • R.W. Wies , A.N. Agarwal , T.J. Chubb . Optimization of a PV with diesel-battery system for remote villages. Int. Energy J. , 1 , 107 - 118
    13. 13)
      • X. Gong , M. Kulkarni . Design optimization of a large scale rooftop photovoltaic system. Sol. Energy , 362 - 374
    14. 14)
      • S. Diaf , G. Notton , M. Belhamel , M. Haddadi , A. Louche . Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Appl. Energy , 10 , 968 - 987
    15. 15)
      • http://www.energy.ca.gov/distgen/economics/capital.html.
    16. 16)
      • Y.Q. He , A.K. David . Time-of-use electricity pricing based on global optimization for generation expansion planning. Adv. Power Syst. Control Oper. Manage. , 11 , 668 - 673
    17. 17)
      • S. Ashok . Peak-load management in steel plants. Appl. Energy , 5 , 413 - 424
    18. 18)
      • http://www.ucsusa.org/clean_energy/renewable_energy_basics/farming-the-wind-wind-power-and-agriculture. html.
    19. 19)
      • Z.L. Gaing . Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. , 3 , 1187 - 1195
    20. 20)
      • http://www.ceere.org/rerl/events/ne_islands_2002/3_DuPont_State_Incentive_Programs.pdf.
    21. 21)
      • Duan, D., Liu, J., Niu, H., Wu, J.: `A risk-evasion TOU pricing method for distribution utility in deregulated market environment', 2004 Int. Conf. Power System Technology, 2004, 1, p. 527–531.
    22. 22)
      • R.C. Higgins . (2007) Analysis for financial management.
    23. 23)
      • D. Seeto , C.K. Woo , I. Horowitz . Time-of-use rates vs. Hopkinson tariffs redux: An analysis of the choice of rate structures in a regulated electricity distribution company. Energy Econ. , 2 , 169 - 185
    24. 24)
      • H. Yang , L. Lu , W. Zhou . A novel optimization sizing model for hybrid solar-wind power generation system. Sol. Energy , 76 - 84
    25. 25)
      • http://www.ewea.org/fileadmin/ewea_documents/documents/publications/factsheets/factsheet_economy2.pdf.
    26. 26)
      • I. Aho , H. Klapuri , J. Saarinen , E. Mäkinen . Optimal load clipping with time of use rates. Int. J. Electr. Power Energy Syst. , 4 , 269 - 280
    27. 27)
      • http://www.focusonenergy.com/data/common/dms Files/W_RW_RPTE_CommunityWindBPSummary.pdf.
    28. 28)
      • http://www.nationalwind.org/publications/wes/wes11.htm.
    29. 29)
      • http://www.taipower.com.tw/TaipowerWeb//upload/files/1/main_3_6_4.pdf.
    30. 30)
      • S. Diafa , M. Belhamelb , M. Haddadic , A. Louche . Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island. Energy Policy , 743 - 754
    31. 31)
      • http://www.nrel.gov/docs/fy07osti/41435.pdf.
    32. 32)
      • T.Y. Lee , C.L. Chen . Iteration particle swarm optimization for contract capacities selection of time of use rates industrial customers. Energy Convers. Manage. , 4 , 1120 - 1131
    33. 33)
      • R. Billinton , W. Li . (1994) Reliability assessment of electric power system using Monte Carlo methods.
    34. 34)
      • Kennedy, J., Eberhart, R.: `Particle swarm optimization', Proc. IEEE Int. Conf. Neural Networks, 1995, p. 1942–1948.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg_20070068
Loading

Related content

content/journals/10.1049/iet-rpg_20070068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address