access icon free Analysis and optimisation of a diesel-PV-wind-electric storage system for a standalone power solution

The universal power demand is increasing every day because of population growth, industrial revolution and high standards of living. The renewable energy technologies (RETs) are environmental and cost-effective solutions to satisfy dynamic load profile based on the application of multiple components of a standalone microgrid system that encompasses photovoltaic (PV), diesel generator (DG), electric storage system and wind turbine generator (WTG). This study reveals more insight into various research questions that have not been completely addressed in past investigations. The contributions of the study are expressed: (i) analyse the effects of RETs on the total cost, (ii) test the total benefits, (iii) estimate the market benefit share of the unit that reflects the benefit of one generation unit in proportion to the whole power system, (iv) maximise and minimise the yearly average power generated by (PV and WTG) and DG. This research work presents the application of fmincon optimising tool to accomplish the objectives of the study owing to some significant characteristics. The outcomes of the work show the validity of the model and can assist the utilities to minimise the costs that are identified with the optimal operation of their power systems.

Inspec keywords: wind power plants; distributed power generation; renewable energy sources; turbogenerators; photovoltaic power systems; wind turbines; diesel-electric generators; hybrid power systems; optimisation

Other keywords: power system; wind turbine generator; industrial revolution; generation unit; dynamic load profile; cost-effective solutions; population growth; total benefits; universal power demand; standalone power solution; WTG; standalone microgrid system; optimisation; renewable energy technologies; RETs; market benefit share; diesel-PV-wind-electric storage system; yearly average power

Subjects: Diesel power stations and plants; Optimisation techniques; Wind power plants; Distributed power generation; Power system management, operation and economics; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 20. Ghenai, C., Bettayeb, M.: ‘Modelling and performance analysis of a standalone hybrid soalr PV/fuel cell/DG power system university building’, Energy, 2019, 171, pp. 180189.
    2. 2)
      • 3. Adefarati, T., Bansal, R.C.: ‘Reliability and economic assessment of a microgrid power system with integrating renewable energy resources’, Appl. Energy, 2017, 206, pp. 911933.
    3. 3)
      • 25. Bansal, R.C., Bhatti, T.S., Kothari, D.P.: ‘Some aspects of grid connected wind electric energy conversion systems’, Interdiscip. J. Inst. Eng. (India), 2001, 82, (1), pp. 2528.
    4. 4)
      • 36. Das, M., Singh, M.A.K., Biswas, A.: ‘Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches – case of a radio transmitter station in India’, Energy Convers. Manage., 2019, 185, pp. 339352.
    5. 5)
      • 18. Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.A.: ‘Optimal allocation and sizing of PV/wind/split-diesel/battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building’, Appl. Energy, 2016, 171, pp. 153171.
    6. 6)
      • 14. Li, B., Roche, R., Damien Paire, D., et al: ‘Sizing of a standalone microgrid considering electric power, cooling/ heating, hydrogen loads and hydrogen storage degradation’, Appl. Energy, 2017, 205, pp. 12441259.
    7. 7)
      • 21. Ghenai, C., Bettayeb, M.: ‘Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings’. 2nd Int. Conf. on New Energy and Future Energy System, (NEFES), Kunming, China, 22–25 September 2017.
    8. 8)
      • 19. Adefarati, T., Bansal, R.C.: ‘Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources’, Appl. Energy, 2019, 236, pp. 10891114.
    9. 9)
      • 31. Adefarati, T., Potgieter, S., Naidoo, R., et al: ‘Optimization of PV-wind-battery system storage microgrid system utilizing a genetic algorithm’. Proc. IEEE 7th Int. Conf. on Clean Electrical Power (ICCEP), Otranto, Puglia, Italy, July 2019.
    10. 10)
      • 16. Zhao, B., Zhang, X., Li, P., et al: ‘Optimal sizing, operating strategy and operational experience of a standalone microgrid on Dongfushan Island’, Appl. Energy, 2014, 113, pp. 16561666.
    11. 11)
      • 30. Bansal, R.C., Bhatti, T.S., Kumar, V.: ‘Reactive power control of autonomous wind-diesel hybrid power systems using ANN’. Proc. 8th Int. Power Eng. Conf., Singapore, 3–6 December 2007, pp. 13761381.
    12. 12)
      • 6. Adefarati, T., Bansal, R.C, Justo, J.J.: ‘Reliability and economic evaluation of a microgrid power system’, Energy Procedia, 2017, 142, pp. 4348.
    13. 13)
      • 23. Kabir, M.N., Mishra, Y., Bansal, R.C.: ‘Probabilistic load flow for distribution systems with uncertain PV generation’, Appl. Energy, 2016, 163, pp. 343351.
    14. 14)
      • 5. Adefarati, T., Bansal, R.C, Justo, J.J.: ‘Techno-economic analysis of a PV–wind–battery–diesel standalone power system in a remote area’, J. Eng., 2017, 2017, (13), pp. 740744.
    15. 15)
      • 10. Cristóbal-Monreal, I.R., Dufo-López, R.: ‘Optimization of photovoltaic–diesel–battery standalone systems minimizing system weight’, Energy Convers. Manage., 2016, 119, pp. 279288.
    16. 16)
      • 1. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    17. 17)
      • 27. Carew, N., Warnock, W., Bayindir, R., et al: ‘Analysis of pumped hydroelectric energy storage for large-scale wind energy integration’, Int. J. Electr. Eng. Educ., 2020, pp. 114, https://doi.org/10.1177/0020720920928456.
    18. 18)
      • 32. Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J.M., et al: ‘Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage’, Appl. Energy, 2011, 88, pp. 40334041.
    19. 19)
      • 7. Tazvinga, H., Thopil, M., Numbi, P.B., et al: ‘Distributed renewable energy technologies’, in Bansal, R.C. (Ed.): ‘Handbook of distributed generation’ (Springer International publishing, Cham, Switzerland, 2017), pp. 367.
    20. 20)
      • 35. Cai, W., Li, X., Maleki, A., et al: ‘Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology’, Energy, 2020, 201, p. 117480.
    21. 21)
      • 24. Gidwani, L., Tiwari, H., Bansal, R.C.: ‘Improving power quality of wind energy conversion system with unconventional power electronic interface’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 445453.
    22. 22)
      • 37. Biswas, A., Kumar, A.: ‘Techno-economic optimization of a standalone PV/PHS/battery systems for very low load situation’, Int. J. Renew. Energy Res., 2017, 7, (2), pp. 844856.
    23. 23)
      • 34. Pandiarajan, K., Babulal, C.: ‘Fuzzy harmony search algorithm based optimal power flow for power system security enhancement’, Int. J. Electr. Power Energy Syst., 2016, 9, pp. 7279.
    24. 24)
      • 22. Adefarati, T., Bansal, R.C.: ‘Reliability assessment of distribution system with the integration of renewable distributed generation’, Appl. Energy, 2017, 185, pp. 158171.
    25. 25)
      • 4. Khan, F., Pal, N., Saeed, S.: ‘Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies’, Renew. Energy Rev., 2018, 92, pp. 937947.
    26. 26)
      • 26. van der Stelt, S., AlSkaif, T., van Sark, W.: ‘Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances’, Appl. Energy, 2018, 209, pp. 266276.
    27. 27)
      • 11. Kim, W., Shin, J., Kim, S., et al: ‘Operation scheduling for an energy storage system considering reliability and aging’, Energy, 2017, 141, pp. 389397.
    28. 28)
      • 17. Nojavan, S., Majidi, M., Esfetanaj, N.N.: ‘An efficient cost-reliability optimization model 44 for optimal siting and sizing of energy storage system in a microgrid in the presence of responsible load management’, Energy, 2017, 139, pp. 8997.
    29. 29)
      • 8. Nadjemi, O., Nacer, T., Hamidat, A., et al: ‘Optimal hybrid PV/wind energy system sizing: application of cuckoo search algorithm for Algerian dairy farms’, Renew. Sust. Energy Rev., 2017, 70, pp. 13521365.
    30. 30)
      • 13. Cicilio, P., Orosz, M., Mueller, A., et al: ‘Ugrid: reliable minigrid design and planning toolset for rural electrification’, IEEE Access, 2019, 7, pp. 163988163999.
    31. 31)
      • 28. Das, C.K., Bass, O., Kothapalli, G., et al: ‘Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm’, Appl. Energy, 2018, 232, pp. 212228.
    32. 32)
      • 33. Hafeznia, H., Yousefi, H., Astaraei, F.R.: ‘A novel framework for the potential assessment of utility-scale photovoltaic solar energy, application to eastern Iran’, Energy Convers. Manage., 2017, 151, pp. 240258.
    33. 33)
      • 9. Das, B.K., Al-Abdeli, Y.M., Kothapalli, G.: ‘Optimization of standalone hybrid energy systems supplemented by combustion-based prime movers’, Appl. Energy, 2017, 196, pp. 1833.
    34. 34)
      • 12. Liu, M., Li, W., Wang, C., et al: ‘Reliability evaluation of large-scale battery energy storage systems’, IEEE Trans. Smart Grid, 2017, 8, pp. 27332743.
    35. 35)
      • 2. Adefarati, T., Bansal, R.C.: ‘The impacts of PV-wind-diesel-electric storage hybrid system on the reliability of a power system’, Energy Procedia, 2017, 105, pp. 616621.
    36. 36)
      • 29. Adefarati, T., Papy, N.B., Thopil, M., et al: ‘Non-renewable distributed generation technologies: a review’, in Bansal, R.C. (Ed.): ‘Handbook of distributed generation’ (Springer International publishing, Cham, Switzerland, 2017), pp. 69105.
    37. 37)
      • 15. Zhang, Y., Campana, P.E., Lundblad, A., et al: ‘Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: storage sizing and rule-based operation’, Appl. Energy, 2017, 201, pp. 397411.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0895
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0895
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading