access icon free Frequency excursion mitigation strategy using a novel COA optimised fuzzy controller in wind integrated power systems

The uncertain demeanour from wind generators and loads adversely affect the grid operational stability. Various control approaches have been explored to remedy the system uncertainties while maintaining generation and load demand balance. This study proposes a fuzzy-based proportional–fractional integral–derivative with filter controller to sustain frequency stability in wind integrated power systems having different configurations. The controller parameters have been tuned using a recently developed coyote optimisation algorithm (COA). The proposed control approach is executed and validated on three distinct configurations of two-area power systems. All test models are integrated with a doubly fed induction generator (DFIG) type wind turbine units (WTUs). Different case scenarios have been considered to analyse the efficacy of the proposed control strategy in the presence of WTU. Furthermore, the impact of inertial support delivered by the DFIG-WTU and higher penetration of wind energy in the power system has been studied. The analysis reveals that the control scheme in coordination with WTU support reduces the stress on a wind turbine during the inertial control scheme and maintains the grid frequency stability under unexpected load disturbances. Stability and robustness analysis are also conducted to verify the validity of the introduced control approach.

Inspec keywords: power grids; frequency control; wind power plants; load regulation; power system interconnection; wind turbines; asynchronous generators; fuzzy control; power system stability; power generation control; wind power

Other keywords: grid operational stability; wind integrated power systems; multisource thermal–hydro system; controller parameters; grid frequency stability; investigated power system; recently developed coyote optimisation algorithm; reheat thermal system; multisource thermal–hydro–gas system; fuzzy controller; system uncertainties; fuzzy-based proportional–fractional integral; filter controller; doubly fed induction generator type wind turbine units; wind generators; wind energy; introduced control approach; frequency excursions; inertial control scheme; wind power; two-area power systems viz; frequency excursion strategy

Subjects: Asynchronous machines; Power system control; Wind power plants; Control of electric power systems; Optimisation techniques; Fuzzy control; Power system management, operation and economics; Frequency control

References

    1. 1)
      • 34. Guha, D., Roy, P.K., Banerjee, S.: ‘Maiden application of SSA-optimised CC-TID controller for load frequency control of power systems’, IET Gener. Transm. Distrib., 2019, 13, (7), pp. 11101120.
    2. 2)
      • 42. Zhang, Y., Liu, X., Qu, B.: ‘Distributed model predictive load frequency control of multi-area power system with DFIGs’, IEEE/CAA J. Autom. Sin., 2017, 4, (1), pp. 125135.
    3. 3)
      • 27. Sahu, B.K., Pati, S., Panda, S.: ‘Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system’, IET Gener. Transm. Distrib., 2014, 8, (11), pp. 17891800.
    4. 4)
      • 40. Dahiya, P., Sharma, V., Naresh, R.: ‘Optimal sliding mode control for frequency regulation in deregulated power systems with DFIG-based wind turbine and TCSC–SMES’, Neural Comput. Appl., 2019, 31, (7), pp. 30393056.
    5. 5)
      • 17. Sharma, M., Bansal, R.K., Prakash, S.: ‘Robustness analysis of LFC for multi-area power system integrated with SMES-TCPS by artificial intelligent technique’, J. Electr. Eng. Technol., 2019, 14, (1), pp. 97110.
    6. 6)
      • 37. Arya, Y.: ‘AGC of PV-thermal and hydro-thermal power systems using CES and a new multi-stage FPIDF-(1 + PI) controller’, Renew. Energy, 2019, 134, pp. 796806.
    7. 7)
      • 49. Verma, Y.P., Kumar, A.: ‘Load frequency control in deregulated power system with wind integrated system using fuzzy controller’, Front. Energy, 2013, 7, (2), pp. 245254.
    8. 8)
      • 38. Dhillon, S.S., Lather, J.S., Marwaha, S.: ‘Multi-objective load frequency control using hybrid bacterial foraging and particle swarm optimized PI controller’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 196209.
    9. 9)
      • 35. Saha, A., Saikia, L.C.: ‘Performance analysis of combination of ultra-capacitor and superconducting magnetic energy storage in a thermal-gas AGC system with utilization of whale optimization algorithm optimized cascade controller’, J. Renew. Sust. Energy, 2018, 10, (1), pp. 014103-1014103-25.
    10. 10)
      • 45. Ahmadi, R., Sheikholeslami, A., Niaki, A.N., et al: ‘Dynamic participation of doubly-fed induction generators in multi-control area load frequency control’, Int. Trans. Electr. Energy Syst., 2015, 25, (7), pp. 11301147.
    11. 11)
      • 19. Shankar, R., Pradhan, S.R., Chatterjee, K., et al: ‘A comprehensive state of the art literature survey on LFC mechanism for power system’, Renew. Sustain. Energy Rev., 2017, 76, pp. 11851207.
    12. 12)
      • 7. Verma, Y.P., Kumar, A.: ‘Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation’, Front. Energy, 2012, 6, (2), pp. 184192.
    13. 13)
      • 6. Almeida, R.G.D., Lopes, J.A.P.: ‘Participation of doubly fed induction wind generators in system frequency regulation’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 944950.
    14. 14)
      • 31. Hamamci, S.E.: ‘An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers’, IEEE Trans. Autom. Control, 2007, 52, (10), pp. 19641969.
    15. 15)
      • 41. Mohamed, M.A., Diab, A.A.Z., Rezk, H., et al: ‘A novel adaptive model predictive controller for load frequency control of power systems integrated with DFIG wind turbines’, Neural Comput. Appl., 2020, 32, (11), pp. 71717181.
    16. 16)
      • 46. Falehi, A.D.: ‘An innovative OANF–IPFC based on MOGWO to enhance participation of DFIG-based wind turbine in interconnected reconstructed power system’, Soft Comput., 2019, 23, (23), pp. 1291112927.
    17. 17)
      • 16. Sharma, M., Bansal, R.K., Prakash, S., et al: ‘MVO algorithm based LFC design of a six-area hybrid diverse power system integrating IPFC and RFB’, IETE J. Res., 2018, https://doi.org/10.1080/03772063.2018.1548908.
    18. 18)
      • 5. Wang, H., Liu, Y., Zhou, B., et al: ‘Advanced adaptive frequency support scheme for DFIG under cyber uncertainty’, Renew. Energy, 2020, 161, pp. 98109.
    19. 19)
      • 18. Arya, Y., Kumar, N.: ‘Design and analysis of BFOA-optimized fuzzy PI/PID controller for AGC of multi-area traditional/restructured electrical power systems’, Soft Comput., 2017, 21, (21), pp. 64356452.
    20. 20)
      • 39. Dhillon, S.S., Lather, J.S., Wang, G.-G., et al: ‘Monarch butterfly optimized control with robustness analysis for grid-tied centralized and distributed power generations’, J. Ambient Intell. Humaniz. Comput., 2020, https://doi.org/10.1007/s12652-020-01992-2.
    21. 21)
      • 25. Sharma, G., Panwar, A., Arya, Y., et al: ‘Integrating layered recurrent ANN with robust control strategy for diverse operating conditions of AGC of the power system’, IET Gener. Transm. Distrib., 2020, 14, (18), pp. 38863895.
    22. 22)
      • 43. Bhateshvar, Y.K., Mathur, H.D., Siguerdidjane, H.: ‘Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment’, Front. Energy, 2015, 9, (1), pp. 721.
    23. 23)
      • 8. Peng, X., Yao, W., Yan, C., et al: ‘Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs’, IEEE Trans. Power Syst., 2020, 35, (2), pp. 962974.
    24. 24)
      • 13. Wu, Z., Gao, W., Gao, T., et al: ‘State-of-the-art review on frequency response of wind power plants in power systems’, J. Mod. Power Syst. Clean Energy, 2018, 6, (1), pp. 116.
    25. 25)
      • 36. Pradhan, C., Bhende, C.N.: ‘Online load frequency control in wind integrated power systems using modified Jaya optimization’, Eng. Appl. Artif. Intell., 2019, 77, pp. 212228.
    26. 26)
      • 4. IRENA.: ‘Global energy transformation: a roadmap to 2050’, in ‘International renewable energy agency’ (International Renewable Energy Agency, Abu Dhabi, 2018), pp. 3839.
    27. 27)
      • 52. Mohammadpour, H.A., Santi, E.: ‘Modeling and control of gate-controlled series capacitor interfaced with a DFIG-based wind farm’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 10221033.
    28. 28)
      • 11. Deepak, M., Abraham, R.J., Gonzalez-Longatt, F.M., et al: ‘A novel approach to frequency support in a wind integrated power system’, Renew. Energy, 2017, 108, pp. 194206.
    29. 29)
      • 2. Dhundhara, S., Verma, Y.P.: ‘Grid frequency enhancement using coordinated action of wind unit with redox flow battery in a deregulated electricity market’, Int. Trans. Electr. Energy Syst., 2020, 30, (3), pp. 133.
    30. 30)
      • 12. Jalali, M., Bhattacharya, K.: ‘Frequency regulation and AGC in isolated systems with DFIG-based wind turbines’. IEEE Power Energy Soc. Gen. Meet., Vancouver, BC, Canada, 2013, pp. 15.
    31. 31)
      • 48. Arya, Y.: ‘AGC of two-area electric power systems using optimized fuzzy PID with filter plus double integral controller’, J. Franklin Inst., 2018, 355, (11), pp. 45834617.
    32. 32)
      • 14. Gholamrezaie, V., Dozein, M.G., Monsef, H., et al: ‘An optimal frequency control method through a dynamic load frequency control (LFC) model incorporating wind farm’, IEEE Syst. J., 2018, 12, (1), pp. 392401.
    33. 33)
      • 21. Dhundhara, S., Verma, Y.P.: ‘Capacitive energy storage with optimized controller for frequency regulation in realistic multisource deregulated power system’, Energy, 2018, 147, pp. 11081128.
    34. 34)
      • 33. Arya, Y.: ‘Improvement in automatic generation control of two-area electric power systems via a new fuzzy aided optimal PIDN-FOI controller’, ISA Trans., 2018, 80, pp. 475490.
    35. 35)
      • 10. Dhundhara, S., Verma, Y.P.: ‘Evaluation of CES and DFIG unit in AGC of realistic multisource deregulated power system’, Int. Trans. Electr. Energy Syst., 2017, 27, (5), p. e2304.
    36. 36)
      • 44. Sharma, G., Nasiruddin, I., Niazi, K.R.: ‘Optimal automatic generation control of asynchronous power systems using output feedback control strategy with dynamic participation of wind turbines’, Electr. Power Compon. Syst., 2015, 43, (4), pp. 384398.
    37. 37)
      • 30. Aboelela, M.A.S., Ahmed, M.F., Dorrah, H.T.: ‘Design of aerospace control systems using fractional PID controller’, J. Adv. Res., 2012, 3, (3), pp. 225232.
    38. 38)
      • 26. Arya, Y.: ‘Effect of electric vehicles on load frequency control in interconnected thermal and hydrothermal power systems utilising CF-FOIDF controller’, IET Gener. Transm. Distrib., 2020, 14, (14), pp. 26662675.
    39. 39)
      • 22. Shayeghi, H., Shayanfar, H.A.: ‘Application of ANN technique based on μ-synthesis to load frequency control of interconnected power system’, Int. J. Electr. Power Energy Syst., 2006, 28, (7), pp. 503511.
    40. 40)
      • 51. Tepljakov, A., Petlenkov, E., Belikov, J.: ‘FOMCON: a MATLAB toolbox for fractional-order system identification and control’, Int. J. Microelectron. Comput. Sci., 2011, 2, (2), pp. 5162.
    41. 41)
      • 23. Jalali, N., Razmi, H., Doagou-Mojarrad, H.: ‘Optimized fuzzy self-tuning PID controller design based on tribe-DE optimization algorithm and rule weight adjustment method for load frequency control of interconnected multi-area power systems’, Appl. Soft Comput., 2020, 93, p. 106424.
    42. 42)
      • 50. Pierezan, J., Coelho, L.D.S.: ‘Coyote optimization algorithm: a new metaheuristic for global optimization problems’. 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018, pp. 18.
    43. 43)
      • 32. Padula, F., Visioli, A.: ‘Advances in robust fractional control’ (Springer International Publishing, Cham, 2015).
    44. 44)
      • 1. Li, Y., Yang, Z., Li, G., et al: ‘Optimal scheduling of an isolated microgrid with battery storage considering load and renewable generation uncertainties’, IEEE Trans. Ind. Electron., 2019, 66, (2), pp. 15651575.
    45. 45)
      • 29. Arya, Y.: ‘Impact of hydrogen aqua electrolyzer-fuel cell units on automatic generation control of power systems with a new optimal fuzzy TIDF-II controller’, Renew. Energy, 2019, 139, pp. 468482.
    46. 46)
      • 9. Verma, Y.P., Kumar, A.: ‘Participation of doubly fed induction generator based wind turbine in frequency regulation with frequency-linked pricing’, Electr. Power Compon. Syst., 2012, 40, (14), pp. 15861604.
    47. 47)
      • 28. Gheisarnejad, M., Khooban, M.H.: ‘Design an optimal fuzzy fractional proportional integral derivative controller with derivative filter for load frequency control in power systems’, Trans. Inst. Meas. Control, 2019, 41, (9), pp. 25632581.
    48. 48)
      • 24. Arya, Y.: ‘Automatic generation control of two-area electrical power systems via optimal fuzzy classical controller’, J. Franklin Inst., 2018, 355, (5), pp. 26622688.
    49. 49)
      • 20. Pappachen, A., Fathima, A.P.: ‘Critical research areas on load frequency control issues in a deregulated power system: a state-of-the-art-of-review’, Renew. Sustain. Energy Rev., 2017, 72, pp. 166177.
    50. 50)
      • 3. REN21 community: ‘Renewables 2019 Global Status Report’, 2019.
    51. 51)
      • 15. Saxena, S.: ‘Load frequency control strategy via fractional-order controller and reduced-order modeling’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 603614.
    52. 52)
      • 53. Gudmundsson, S., Hafstein, S.F.: ‘Lyapunov function verification: MATLAB implementation’, IFAC-PapersOnLine, 2015, 48, (11), pp. 796801.
    53. 53)
      • 47. Sharma, G., Narayanan, K., Davidson, I.E., et al: ‘Integration and enhancement of load frequency control design for diverse sources power system via DFIG based wind power generation and interconnected via parallel HVDC/EHVAC tie-lines’, Int. J. Eng. Res. Africa, 2020, 46, pp. 106124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0882
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0882
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading