access icon free Hierarchical coordination strategy for three-phase MV and LV distribution networks with high-penetration residential PV units

This paper presents a hierarchical coordination method to improve operation conditions between the medium-voltage distribution network (MVDN) and low-voltage distribution networks (LVDN) considering high-level residential PV units integrating LV distribution networks. It addresses the following issues: (i) rapid power fluctuations and unbalance caused by high-level residential PV units passes to the MV distribution network via the point of common coupling (PCC) and thus increase operation challenges; (ii) power fluctuations, voltage violations and unbalance simultaneously happens in the LVDNs. A hierarchical coordination structure the MVDN and LVDN is proposed. In the MV level, a centralized dispatch method based on three-phase optimal power flow is developed in the timescale of minutes to minimize the power losses, unbalance and PCC adjustments, which are achieved by regulating energy storage systems (ESSs) and PV inverters in the LV level. In the LV level, a distributed control model based on a consensus algorithm is proposed in the timescale of seconds to track the reference active (or reactive) power at the PCC given by the MV level and mitigate its fluctuations. Simulations studies are performed to verify the proposed method.

Inspec keywords: invertors; photovoltaic power systems; load flow; distributed control; power system simulation; power distribution reliability; power distribution control

Other keywords: three-phase optimal power flow; hierarchical coordination; power losses; high-level residential PV units; three-phase MV distribution networks; high-penetration residential PV units; low-voltage level; power fluctuations; reactive power; medium-voltage level; point of common coupling; three-phase LV distribution networks; high-level residential photovoltaic units; rapid power fluctuations; distributed control model; low-voltage distribution networks; three-phase IEEE 33 buses; centralised dispatch method; energy storage systems; LVDN; MVDN; PCC; China; voltage violations; PV inverters

Subjects: Control of electric power systems; Multivariable control systems; Distribution networks; DC-AC power convertors (invertors); Reliability; Power electronics, supply and supervisory circuits; Power system control; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 32. Fay, D., Ringwood, J.V.: ‘On the influence of weather forecast errors in short-term load forecasting models’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 17511758.
    2. 2)
      • 31. Sangrody, H., Sarailoo, M., Zhou, N., et al: ‘Weather forecasting error in solar energy forecasting’, IET Renew. Power Gener., 2017, 11, (10), pp. 12741280.
    3. 3)
      • 29. Youssef, K.H.: ‘A new method for online sensitivity-based distributed voltage control and short circuit analysis of unbalanced distribution feeders’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 12531260.
    4. 4)
      • 15. Korukonda, M.P., Mishra, S.R., Shukla, A., et al: ‘Handling multi-parametric variations in distributed control of cyber-physical energy systems through optimal communication design’, IET Cyber-Phys. Syst. Theory Appl., 2017, 2, (2), pp. 90100.
    5. 5)
      • 5. Hernández, J.C., Ortega, M.J., De la Cruz, J., et al: ‘Guidelines for the technical assessment of harmonic, flicker and unbalance emission limits for PV-distributed generation’, Electr. Power Syst. Res., 2011, 81, (7), pp. 12471257.
    6. 6)
      • 14. Robbins, B.A., Hadjicostis, C.N., Dominguez-Garcia, A.D.: ‘A two-stage distributed architecture for voltage control in power distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14701482.
    7. 7)
      • 8. Yap, W.K., Havas, L., Overend, E., et al: ‘Neural network-based active power curtailment for overvoltage prevention in low voltage feeders’, Expert Syst. Appl., 2014, 41, (41), pp. 10631070.
    8. 8)
      • 16. Cai, Y., Tang, W., Zhang, B., et al: ‘Collaborative configuration for distributed energy storages and cyber systems in low-voltage distribution networks with high penetration of PV systems’, IET Cyber-Phys. Syst. Theory Appl., 2019, 4, (1), pp. 312.
    9. 9)
      • 28. Wang, P., Liang, D.H., Yi, J., et al: ‘Integrating electrical energy storage into coordinated voltage control schemes for distribution networks’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 10181032.
    10. 10)
      • 2. Wong, P.K.C., Kalam, A., Barr, R.: ‘Modelling and analysis of practical options to improve the hosting capacity of low voltage networks for embedded photo-voltaic generation’, IET Renew. Power Gener., 2017, 11, (5), pp. 625632.
    11. 11)
      • 20. Hernández, J.C., Sanchez-Sutil, F., Muñoz-Rodríguez, F.J., et al: ‘Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve’, Appl. Energy, 2020, 277, p. 115529.
    12. 12)
      • 27. Tian, Z., Wu, W., Zhang, B., et al: ‘Mixed-integer second-order cone programing model for var optimisation and network reconfiguration in active distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (8), pp. 19381946.
    13. 13)
      • 12. Demirok, E., González, P. C., Frederiksen, K. H. B., et al: ‘Local reactive power control methods for overvoltage prevention of distributed solar inverters in low-voltage grids’, IEEE J. Photovoltaics, 2011, 1, (2), pp. 174182.
    14. 14)
      • 21. Gomez-Gonzalez, M., Hernandez, J.C., Vera, D., et al: ‘Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve’, Energy, 2020, 191, p. 116554.
    15. 15)
      • 18. Olivier, F., Aristidou, P., Ernst, D., et al: ‘Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 926936.
    16. 16)
      • 25. Kabiri, R., Holmes, D.G., McGrath, B.P., et al: ‘LV grid voltage regulation using transformer electronic tap changing, with PV inverter reactive power injection’, IEEE J. Emerging Sel. Top. Power Electron., 2015, 3, (4), pp. 11821192.
    17. 17)
      • 23. Su, X., Masoum, M.A.S., Wolfs, P.J.: ‘Multi-objective hierarchical control of unbalanced distribution networks to accommodate more renewable connections in the smart grid era’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 39243936.
    18. 18)
      • 13. Tang, Z., Hill, D.J., Liu, T.: ‘Fast distributed reactive power control for voltage regulation in distribution networks’, IEEE Trans. Power Syst., 2019, 34, (1), pp. 802805.
    19. 19)
      • 9. Tonkoski, R., Lopes, L.A.C., El-Fouly, T.H.M.: ‘Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention’, IEEE Trans. Sustain. Energy, 2011, 2, (2), pp. 139147.
    20. 20)
      • 19. Farag, H.E.Z., El-Saadany, E.F.: ‘A novel cooperative protocol for distributed voltage control in active distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 16451656.
    21. 21)
      • 17. Wang, Y., Tan, K.T., Peng, X.Y., et al: ‘Coordinated control of distributed energy-storage systems for voltage regulation in distribution networks’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 11321141.
    22. 22)
      • 3. O'Connell, A., Keane, A.: ‘Volt–var curves for photovoltaic inverters in distribution systems’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 730739.
    23. 23)
      • 26. Su, X., Masoum, M.A.S., Wolfs, P.J.: ‘Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire lv distribution networks’, IEEE Trans. Sustain. Energy, 2014, 5, (3), pp. 967977.
    24. 24)
      • 1. Haque, M.M., Wolfs, P.: ‘A review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measures’, Renew. Sustain. Energy Rev., 2016, 62, pp. 11951208.
    25. 25)
      • 6. Ruiz-Rodriguez, F.J., Hernández, J.C., Jurado, F.: ‘Voltage unbalance assessment in secondary radial distribution networks with single-phase photovoltaic systems’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 646654.
    26. 26)
      • 22. Malekpour, A.R., Pahwa, A., Natarajan, B.: ‘Hierarchical architecture for integration of rooftop PV in smart distribution systems’, IEEE Trans. Smart Grid, 2018, 9, (3), pp. 20192029.
    27. 27)
      • 24. Antoniadou-Plytaria, K.E., Kouveliotis-Lysikatos, I.N., Georgilakis, P.S., et al: ‘Distributed and decentralized voltage control of smart distribution networks: models, methods, and future research’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 29993008.
    28. 28)
      • 7. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘A multi-mode control strategy for var support by solar PV inverters in distribution networks’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 13161326.
    29. 29)
      • 30. Ricciardi, T.R., Petrou, K., Franco, J.F., et al: ‘Defining customer export limits in PV-rich low voltage networks’, IEEE Trans. Power Syst., 2019, 34, (1), pp. 8797.
    30. 30)
      • 10. Weckx, S., Driesen, J.: ‘Optimal local reactive power control by PV inverters’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 16241633.
    31. 31)
      • 4. Wolfs, P., Masoum, M.A.S., Su, X.: ‘Comprehensive optimal photovoltaic inverter control strategy in unbalanced three-phase four-wire low voltage distribution networks’, IET Gener. Transm. Distrib., 2014, 8, (11), pp. 18481859.
    32. 32)
      • 11. Samadi, A., Eriksson, R., Söder, L., et al: ‘Coordinated active power-dependent voltage regulation in distribution grids with PV systems’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14541464.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0866
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0866
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading