Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Integration of wind turbines in distribution systems and development of an adaptive overcurrent relay coordination scheme with considerations for wind speed forecast uncertainty

The integration of renewable energy (RE)-based distributed generation (DG) with electric power distribution systems (DSs) in association with smart grid technology has numerous benefits, however, due to their intermittent nature, the utilisation of RE-based DG may pose threats to the proper operation of conventional overcurrent (OC) protection schemes. The resulting threats, malfunctions, and non-selective actions could occur by relays within the DS, and the development of efficient protection schemes is necessary. The objective of this study is to propose and simulate an adaptive OC protection scheme in DSs in the presence of doubly-fed induction generator (DFIG) wind turbines based on wind speed forecast data with considerations for wind speed forecast uncertainty and a low-voltage ride-through requirement for wind turbines. In each time interval and possible operating mode, the output power of DFIG-based wind turbines and relay setting parameters are determined offline. The results show that the proposed protection scheme prevents malfunctions and non-selective operations of relays, and also provides faster fault isolations, as compared to the conventional OC protection scheme.

References

    1. 1)
      • 26. John Justo, J., Ro, K.-S.: ‘Control strategies of doubly fed induction generator-based wind turbine system with new rotor current protection topology’, J. Renew. Sustain. Energy, 2012, 4, (4), p. 43123.
    2. 2)
      • 29. Bakar, A.H.A., Mokhlis, H., Illias, H.A., et al: ‘The study of directional overcurrent relay and directional earth-fault protection application for 33 kV underground cable system in Malaysia’, Int. J. Electr. Power Energy Syst., 2012, 40, (1), pp. 113119.
    3. 3)
      • 28. Grid, A., Protection, N., Guide, A., ALSTOM (Firm).: ‘Network protection & automation guide’, ALSTOM (Firm), 2002.
    4. 4)
      • 6. Nascimento, J.P., Brito, N.S.D.D., Souza, B.A.: ‘An adaptive overcurrent protection system applied to distribution systems’, Comput. Electr. Eng., 2020, 81, p. 106545.
    5. 5)
      • 25. Hu, S., Zou, X., Kang, Y.: ‘A novel optimal design of DFIG crowbar resistor during grid faults’. 2014 Int. Power Electronics Conf. (IPEC-Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 2014, pp. 555559.
    6. 6)
      • 21. Maheshwari, V., Devulapalli, B.D., Saxena, A.K.: ‘FPGA-based digital overcurrent relay with concurrent sense-process-communicate cycles’, Int. J. Electr. Power Energy Syst., 2014, 55, pp. 6673.
    7. 7)
      • 27. Windfinder – wind forecasts, wind map, wind speed; weather reports’, https://www.windfinder.com/#3/39.5000/-98.3500, accessed June 2018.
    8. 8)
      • 24. Regulations for grid connection | Energinet’, https://en.energinet.dk/Electricity/Rules-and-Regulations/Regulations-for-grid-connection, accessed June 2018.
    9. 9)
      • 15. Panigrahi, B.K., Samantaray, S.R., Dubey, R., et al: ‘Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 247256.
    10. 10)
      • 19. Gopalan, S.A., Sreeram, V., Iu, H.H.C.C.: ‘A review of coordination strategies and protection schemes for microgrids’, Renew. Sustain. Energy Rev., 2014, 32, pp. 222228.
    11. 11)
      • 17. Momesso, A.E.C.C., Wellington, W.M., Asada, E.N., et al: ‘Adaptive directional overcurrent protection considering stability constraint’, Electr. Power Syst. Res., 2020, 181, p. 106190.
    12. 12)
      • 2. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    13. 13)
      • 10. Ferreira, R.R., Colorado, P.J., Grilo, A.P., et al: ‘Method for identification of grid operating conditions for adaptive overcurrent protection during intentional islanding operation’, Int. J. Electr. Power Energy Syst., 2019, 105, pp. 632641.
    14. 14)
      • 30. Siemens, A.G., Sector, S.E., Gear, S., et al: ‘Power engineering guide’ (Edition, Siemens AG 2017 Energy Management Division Freyeslebenstrasse 191058, Erlangen, Germany, 2014).
    15. 15)
      • 12. Tang, W.-J., Yang, H.-T.: ‘Self-adaptive protection strategies for distribution system with DGs and FCLs based on data mining and neural network’. 2017 IEEE Int. Conf. on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 2017, pp. 15.
    16. 16)
      • 13. Núñez-Mata, O., Palma-Behnke, R., Valencia, F., et al: ‘Adaptive protection system for microgrids based on a robust optimization strategy’, Energies, 2018, 11, (2), p. 308.
    17. 17)
      • 23. Miller, N.W., Price, W.W., Sanchez-Gasca, J.J., et al: ‘Dynamic modeling of GE 1. 5 and (report)’, GE-Power Syst. Energy Consult., 2003, 3, (3.0), pp. 19771983.
    18. 18)
      • 14. Javadian, S.A.M.M., Haghifam, M.-R.R., Fotuhi Firoozabad, M., et al: ‘Analysis of protection system's risk in distribution networks with DG’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 688695.
    19. 19)
      • 22. Anaya-Lara, O., Campos-Gaona, D., Moreno-Goytia, E., et al: ‘Offshore wind energy generation: control, protection, and integration to electrical systems’ (John Wiley & Sons, West Sussex, United Kingdom, 2014).
    20. 20)
      • 8. Chen, C.-R.R., Lee, C.-H.H.: ‘Adaptive overcurrent relay coordination for off-peak loading in interconnected power system’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 140144.
    21. 21)
      • 5. Ates, Y., Uzunoglu, M., Karakas, A., et al: ‘Implementation of adaptive relay coordination in distribution systems including distributed generation’, J. Clean. Prod., 2016, 112, pp. 26972705.
    22. 22)
      • 1. Arandian, B., Ardehali, M.M.: ‘Renewable photovoltaic-thermal combined heat and power allocation optimization in radial and meshed integrated heat and electricity distribution networks with storages based on newly developed hybrid shuffled frog leaping algorithm’, J. Renew. Sustain. Energy, 2017, 9, (3), p. 33503.
    23. 23)
      • 3. Manditereza, P.T., Bansal, R.C.: ‘Review of technical issues influencing the decoupling of DG converter design from the distribution system protection strategy’, IET Renew. Power Gener., 2018, 12, (10), pp. 10911100.
    24. 24)
      • 4. Papaspiliotopoulos, V.A., Korres, G.N., Hatziargyriou, N.D.: ‘Adverse impact of distributed generation on protection of the Hellenic MV network-recommendations for protection scheme upgrade’, CIRED-Open Access Proc. J., 2017, 2017, (1), pp. 934938.
    25. 25)
      • 20. Lange, M.: ‘On the uncertainty of wind power predictions—analysis of the forecast accuracy and statistical distribution of errors’, J. Sol. Energy Eng., 2005, 127, (2), pp. 177184.
    26. 26)
      • 7. Abbasi, A., Karegar, H.K., Aghdam, T.S.: ‘Adaptive protection coordination with setting groups allocation’, Int. J. Renew. Energy Res., 2019, 9, (2), pp. 795803.
    27. 27)
      • 16. Singh, M., Vishnuvardhan, T., Srivani, S.G.G.: ‘Adaptive protection coordination scheme for power networks under penetration of distributed energy resources’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 39193929.
    28. 28)
      • 9. Singh, M., Kaur, S., Basak, P.: ‘An approach to adaptive protection scheme for a PV generator based microgrid’. 2019 4th Int. Conf. on Smart and Sustainable Technologies (SpliTech), Split, Croatia, Croatia, 2019, pp. 16.
    29. 29)
      • 11. Piesciorovsky, E.C., Schulz, N.N.: ‘Fuse relay adaptive overcurrent protection scheme for microgrid with distributed generators’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 540549.
    30. 30)
      • 18. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distribution systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0786
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0786
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address