access icon free Robust fault detection approach for wind farms considering missing data tolerance and recovery

The advancement in sensing technologies and infrastructure allows real-time condition monitoring on wind turbines (WTs), which helps improve the power generation efficiency, lower the maintenance costs of wind farms (WFs). Practically, the real-time measurements could be unavailable at the Supervisory Control and Data Acquisition end due to unintended events such as sensor faults and communication loss, which significantly depreciates the condition monitoring and fault detection performance. Aiming to mitigate the missing data impact on data-driven WF applications, this study develops a robust anomaly detection approach for WT fault detection using a denoising variational autoencoder. In presence of missing measurements, the proposed approach can not only sustain high fault detection performance but also recover the missing data as an auxiliary function. The proposed approach is tested on a realistic offshore WF and compared with other autoencoder variants and traditional anomaly detection methods. The testing results verify the outstanding robustness of the proposed approach against missing data events and demonstrate its great potential in missing data recovery.

Inspec keywords: condition monitoring; wind power plants; wind turbines; fault diagnosis; data acquisition; sensors; offshore installations

Other keywords: realistic offshore WF; Supervisory Control; sensing technologies; missing measurements; lower the maintenance costs; data recovery; robust anomaly detection approach; denoising variational autoencoder; Data Acquisition end; wind farms; robust fault detection approach; power generation efficiency; high fault detection performance; outstanding robustness; unintended events; missing data tolerance; communication loss; wind turbines; real-time condition monitoring; traditional anomaly detection methods; WT fault detection; missing data events; sensor faults; missing data impact; real-time measurements

Subjects: Other topics in statistics; Computer vision and image processing techniques; Optical, image and video signal processing; Knowledge engineering techniques; Wind power plants

References

    1. 1)
      • 4. Helbing, G., Ritter, M.: ‘Deep learning for fault detection in wind turbines’, Renew. Sustain. Energy Rev., 2018, 98, pp. 189198.
    2. 2)
      • 10. Qu, Y., Bechhoefer, E., He, D., et al: ‘A new acoustic emission sensor based gear fault detection approach’, Int. J. Prognostics Health Manag., 2013, 4, pp. 114.
    3. 3)
      • 32. Kingma, D.P., Welling, M.: ‘Auto-encoding variational Bayes’. ICLR, Banff, AB, Canada, 2014.
    4. 4)
      • 7. Dey, S., Pisu, P., Ayalew, B.: ‘A comparative study of three fault diagnosis schemes for wind turbines’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 18531868.
    5. 5)
      • 20. Zaher, Z., McArthur, S.D.J., Infield, D.G., et al: ‘Online wind turbine fault detection through automated SCADA data analysis’, Wind Energy, 2009, 12, (6), pp. 574593.
    6. 6)
      • 31. Mugdadi, A.R., Ahmad, I.A.: ‘A bandwidth selection for kernel density estimation of functions of random variables’, Comput. Statist. Data Anal., 2004, 47, (1), pp. 4962.
    7. 7)
      • 26. Wang, L., Zhang, Z., Xu, J., et al: ‘Wind turbine blade breakage monitoring with deep autoencoders’, IEEE Trans. Smart Grid, 2018, 9, (4), pp. 28242833.
    8. 8)
      • 2. Ma, K., Zhu, J., Soltani, M., et al: ‘Active Power Dispatch Strategy of Wind Farms under Generator Faults’. In S.Haugen, , A.Barros, , C.V.Gulijk, , et al (Eds.): Proc. European Safety and Reliability Conference 2018: Safe Societies in a Changing World, (CRC Press, 2018), pp. 21472152.
    9. 9)
      • 8. Yang, W., Tavner, P.J., Wilkinson, M.R.: ‘Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train’, IET Renew. Power Gener., 2009, 3, (1), pp. 111.
    10. 10)
      • 23. Xu, Q., Lu, S., Zhai, Z., et al: ‘Adaptive fault detection in wind turbine via RF and CUSUM’, IET Renew. Power Gener., 2020, 14, (10), pp. 17891796.
    11. 11)
      • 11. Li, R.Y., Seckiner, S.U., He, D., et al: ‘Gear fault location detection for split torque gearbox using AE sensors’, IEEE Trans. Syst., Man, Cybern., C (Appl. Rev.), 2012, 42, (6), pp. 13081317.
    12. 12)
      • 14. Kusiak, A., Verma, A.: ‘A data-mining approach to monitoring wind turbines’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 150157.
    13. 13)
      • 24. Zhao, H.S., Liu, H.H., Hu, W.J., et al: ‘Anomaly detection and fault analysis of wind turbine components based on deep learning network’, Renew. Energy, 2018, 127, pp. 825834.
    14. 14)
      • 18. Guo, P., Infield, D., Yang, X.Y.: ‘Wind turbine generator condition-monitoring using temperature trend analysis’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 124133.
    15. 15)
      • 15. Liu, J., Qu, F., Hong, X., et al: ‘A small-sample wind turbine fault detection method with synthetic fault data using generative adversarial nets’, IEEE Trans. Ind. Inf., 2019, 15, (7), pp. 38773888.
    16. 16)
      • 28. Zhang, Y., Li, M., Dong, Z.Y., et al: ‘A probabilistic anomaly detection approach for data-driven wind turbine condition monitoring’, CSEE J. Power Energy Syst., 2019, 5, (2), pp. 149158.
    17. 17)
      • 22. Schlechtingen, M., Santos, I.F., Achiche, S.: ‘Wind turbine condition monitoring based on SCADA data using normal behavior models. Part 1: system description’, Appl. Soft Comput., 2013, 13, (1), pp. 259270.
    18. 18)
      • 6. Odgaard, P.F., Stoustrup, J.: ‘A benchmark evaluation of fault tolerant wind turbine control concepts’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 12211228.
    19. 19)
      • 17. Yang, W. X., Court, R., Jiang, J. S.: ‘Wind turbine condition monitoring by the approach of SCADA data analysis’, Renew. Energy, 2013, 53, pp. 365376.
    20. 20)
      • 5. Hwang, I., Kim, S., Kim, Y., et al: ‘A survey of fault detection, isolation, and reconfiguration methods’, IEEE Trans. Control Syst. Technol., 2010, 18, (3), pp. 636653.
    21. 21)
      • 12. Gong, X., Qiao, W.: ‘Imbalance fault detection of direct-drive wind turbines using generator current signals’, IEEE Trans. Energy Convers., 2012, 27, (2), pp. 468476.
    22. 22)
      • 13. Gong, X., Qiao, W.: ‘Current-based mechanical fault detection for direct-drive wind turbines via synchronous sampling and impulse detection’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 16931702.
    23. 23)
      • 16. Bently, D.E., Hatch, C.T.: ‘Fundamentals of rotating machinery diagnostics’ (ASME Press, New York, 2003).
    24. 24)
      • 3. Qiao, W., Lu, D.G.: ‘A survey on wind turbine condition monitoring and fault diagnosis – part I: components and subsystems’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 65366545.
    25. 25)
      • 21. Bangalore, P., Tjernberg, L.B.: ‘An artificial neural network approach for early fault detection of gearbox bearings’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 980987.
    26. 26)
      • 1. Badal, F.R., Das, P., Sarker, S.K., et al: ‘A survey on control issues in renewable energy integration and microgrid’, Prot. Control. Modern Power Syst., 2019, 4, (1), p. 8.
    27. 27)
      • 27. Wang, L., Zhang, Z., Long, H., et al: ‘Wind turbine gearbox failure identification with deep neural networks’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 13601368.
    28. 28)
      • 19. Dao, P.B., Staszewski, W.J., Barszcz, T., et al: ‘Condition monitoring and fault detection in wind turbines based on cointegration analysis of SCADA data’, Renew. Energy, 2018, 116, pp. 107122.
    29. 29)
      • 25. Yang, L., Zhang, Z., Xu, J., et al: ‘A conditional convolutional autoencoder based method for monitoring wind turbine blade breakages’, IEEE Trans. Ind. Inf., 2020, to be published.
    30. 30)
      • 29. Vincent, P., Larochelle, H., Lajoie, I., et al: ‘Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion’, J. Mach. Learn. Res., 2010, 11, pp. 33713408.
    31. 31)
      • 9. Yang, B., Liu, R., Chen, X.: ‘Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 13211331.
    32. 32)
      • 30. Ge, Z., Song, Z.: ‘Maximum-likelihood mixture factor analysis model and its application for process monitoring’, Chem. Intell. Lab. Syst., 2010, 102, (1), pp. 5361.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0604
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0604
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading