access icon free Comparing electricity balancing capacity, emissions, and cost for three different storage-based local energy systems

This study provides an analysis of the potential for a sub-energy system to provide an electricity balancing service to, in this case, a national energy system with a large share of variable renewable electricity generation. By comparing electricity balancing capacity, CO2, eq-emissions, and costs, three different local residential energy system setups are assessed. The setups contain different combinations of district heating, combined heat and power, thermal energy storage, electric battery storage, heat pumps, and electric boilers. The analysis focuses on system-level integration, heat and electricity cross-sectoral operations, and unconventional production strategies for district heating production. The results show that local sub-energy systems with heat pumps, combined heat and power, and thermal energy storage has the potential to reduce national electricity balancing demand in an economically feasible way, and with modest CO2, eq-emissions. It was also shown that electricity-based heat production without district heating is economically unfavourable, even in the most optimistic scenario; it is not likely to be feasible within a 30-year period.

Inspec keywords: heat pumps; thermal energy storage; power generation economics; cogeneration; boilers; district heating

Other keywords: combined heat and power; CO2; system-level integration; eq-emissions; storage-based local energy systems; national electricity balancing demand; national energy system; local sub-energy systems; variable renewable electricity generation; electric boilers; heat pumps; district heating production; electricity balancing capacity; thermal energy storage; local residential energy system; electric battery storage; electricity-based heat production; sub-energy system

Subjects: Heating (energy utilisation); Power and plant engineering (mechanical engineering); Storage in thermal energy; Heat and thermodynamic processes (mechanical engineering); Space heating; Power system management, operation and economics; Thermal energy conversion (heat engines and heat pumps); Thermal power stations and plants

References

    1. 1)
    2. 2)
      • 34. Swedish Energy Markets Inspectorate, 2019. Alkefjärd, T., n.d. Discount rate for energy market, 2020–2023. [WWW Document] Available at https://www.energimarknadsinspektionen.se/Documents/Forhandsreglering_el/2020-2023/Beslut_om_intaktsramar_och_darpa_foljande_dokument/RER00607/RER00607_Bilaga_7_Kalkylranta_for_tillsynsperiod_2020-2023.pdf.
    3. 3)
      • 8. Auderis, R., n.d. Värmepumpsförsäljning [WWW Document]. Available at https://skvp.se/aktuellt-o-opinion/statistik/varmepumpsforsaljning (accessed 12 June 2019).
    4. 4)
    5. 5)
      • 15. Monie, S.W., Nilsson, A.M., Åberg, M.: ‘Electricity balancing capacity, emissions, and cost comparison of three storage-based local energy systems for variable power generation’. Conf. Proc. 9th Solar and Storage Integration Workshop, Dublin, Ireland, 15–16 October 2019.
    6. 6)
      • 33. Swedish Environmental Protection Agency, 2019: ‘National inventory report’. Sweden 2019. Greenhouse Gas Emissions Inventories 1990–2017.
    7. 7)
    8. 8)
    9. 9)
      • 2. The Keeling Curve [WWW Document], 2019. The Keeling Curve. Available at http://scripps.ucsd.edu/programs/keelingcurve (accessed 14 August 2019).
    10. 10)
      • 16. Monie, S.W., Nilsson, A.M., Lingfors, D., et al: ‘Thermal energy storages in residential areas – a potential to increase renewable power generation?’. Conf. Proc. ACEEE Summer Study on Energy Efficiency in Buildings 2018, Pacific Grove, CA, USA, 12–17 August 2018.
    11. 11)
    12. 12)
    13. 13)
      • 44. The Swedish Consumer Energy Markets Bureau, 2020. [WWW Document], 2020, March. Energimarknadsbyrån. Available at https://www.energimarknadsbyran.se/english/ (accessed 19 October 2020).
    14. 14)
      • 13. Svenska kraftnät (svk), 2018. Nytt samarbete för smartare användande av elnätet - 3243407 [WWW Document]. Available at https://www.svk.se/om-oss/press/Nytt-samarbete-for-smartare-anvandande-av-elnatet---3243407/?_t_id=1B2M2Y8AsgTpgAmY7PhCfg==&_t_q=coordinet&_t_tags=language:sv,siteid:40c776fe-7e5c-4838-841c-63d91e5a03c9&_t_ip=192.121.1.150&_t_hit.id=SVK_WebUI_Models_Pages_PressPage/_9179b566-9ee7-4b34-9089-41092143e305_sv&_t_hit.pos=1 (accessed 3.14.19).
    15. 15)
      • 4. Swedish Government. 2016. Agreement on the Swedish Energy policy 2017/18:228 – Riksdagen [WWW Document], n.d. Available at https://www.riksdagen.se/sv/dokument-lagar/dokument/proposition/energipolitikens-inriktning_H503228/html (accessed 12 August 2019).
    16. 16)
      • 7. Swedish Energy Agency, 2019. Grid-connected photovoltaic power systems, number and installed effect [WWW Document], n.d. PX-Web. Available at http://pxexternal.energimyndigheten.se/pxweb/en/Nätanslutnasolcellsanläggningar/-/EN0123_2.px/ (accessed 14 October 2019).
    17. 17)
    18. 18)
    19. 19)
      • 3. IPCC, 2014: ‘Climate change 2014: synthesis report’. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp..
    20. 20)
      • 41. Nordpool: What Nord Pool can offer you. [WWW Document], 2019. Available at http://www.nordpoolgroup.com/ (accessed 8 August 2019).
    21. 21)
    22. 22)
      • 30. Swedish Energy Agency, 2020. Air-to-air heat pumps 2009–2013. [WWW Document], n.d. Swedish Energy Agency. Available at https://www.energimyndigheten.se/tester/tester-a-o/luftluftvarmepumpar-2009-2013/?showTable=1&showTable=1&showTable=1&showTable=1&showTable=1 (accessed 14 February 2020).
    23. 23)
      • 24. Claesson, J., Eftring, B., Eskilson, P., et al1985. Markvärme. En handbook om termiska analyser. Del 1 Allmän del (T16:1985). ISBN 91-540-4461-8. Swedish Built Environment Research Council.
    24. 24)
      • 37. Arvay, P., Muller, M.R., Ramdeen, V., et al: ‘Economic implementation of the organic Rankine cycle in industry’. Conf. Proc. ACEEE Summer Study on Energy Efficiency in Industry 2011, Niagara Falls, NY, USA, 26–29 July 2011.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 29. Zottl, A., Nordman, R., Miara, M., 2012. Seasonal performance factor and monitoring for heat pump systems in the building sector, SEPEMO-Build. Benchmarking method of a seasonal performance. D4.4 Benchmarking method of seasonal performance under consideration of boundary conditions. IEE/08/776/SI2.529222.
    29. 29)
    30. 30)
      • 39. IVT Heat pumps, (2019). Technical facts and retail price for IVT Nordic Inverter SilverLine luft/vattenvärmepump [WWW Document], n.d. Available at https://www.ivt.se/produkter/luftluftvarme/ivt-nordic-inverter-silverline/fakta--priser/ (accessed 7 August 2019).
    31. 31)
    32. 32)
    33. 33)
      • 6. Elfström, 2019. Boom in wind power expected – soon providing one fourth of Swedish power [WWW Document]. SVT Nyheter. Available at https://www.svt.se/nyheter/inrikes/vindkraftboom-vantar-snart-en-fjardedel-av-den-svenska-elen (accessed 23 August 19).
    34. 34)
      • 22. Lingfors, D.: ‘Solar variability assessment and grid integration’. Licentiate thesis, Uppsala University, 2015.
    35. 35)
      • 14. Kostov, P., 2019. CoordiNet [WWW document]. Innovation and networks executive agency – European Commission. Available at https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/grids-storage-energy-systems/coordinet (accessed 14 March 2019).
    36. 36)
      • 23. Nordpool: 2018. Available at http://www.nordpoolgroup.com/historical-market-data/ (March 2018).
    37. 37)
    38. 38)
      • 5. Swedish Energy Agency, Energy in Sweden 2018 – An overview, ISSN 1404-3343, p. 7.
    39. 39)
    40. 40)
    41. 41)
      • 32. Swedish Environmental Protection Agency, 2019. Calculation of greenhouse gas emissions [WWW Document], n.d. Naturvårdsverket. Available at https://www.naturvardsverket.se/Stod-i-miljoarbetet/Vagledningar/Luft-och-klimat/Berakna-dina-klimatutslapp/ (accessed 27 May 2019).
    42. 42)
    43. 43)
    44. 44)
    45. 45)
      • 1. Global | cedamia [WWW Document], n.d. Available at https://www.cedamia.org/global/ (accessed 5 June 20).
    46. 46)
      • 11. Danish Energy Agency, 2015. Flexibility in the power system – Danish and European experiences. Danish Energy Agency, Oct 2015.
    47. 47)
      • 51. Bioenergy International (2019). Stockholm Exergi to test carbon capture at Värtan bioenergy plant, 2019. Bioenergy International. Available at https://bioenergyinternational.com/heat-power/stockholm-exergi-to-test-carbon-capture-at-vartan-biomass-chp-plant (accessed 9 August 2019).
    48. 48)
      • 31. Sarbu, I., Sebarchievici, C.: ‘Ground-source heat pumps: theory and experimental research’ (Elsevier Science & Technology, London, 2015), ch. 2.4, p. 13. Available at ProQuest Ebook Central [12 August 2019].
    49. 49)
    50. 50)
      • 27. Pistoia, G.: ‘Battery operated devices and systems - from portable electronics to industrial products’. (Elsevier, The Netherlands, 2009), p. 66. Available at https://app.knovel.com/hotlink/toc/id:kpBODSFPE1/battery-operated-devices/battery-operated-devices. ISSN: 978-0-444-53214-5.
    51. 51)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0574
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0574
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading