Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Sizing energy storage to reduce renewable power curtailment considering network power flows: a distributionally robust optimisation approach

The limited reserve of fossil fuels and public awareness of environmental issues prompt the rapid development of renewable energy generation. However, the centralised utilisation of renewable energy in bulk power systems is impeded mainly by its volatile nature and transmission congestion, leading to the spillage of renewable power. The energy storage unit is expected to be a promising measure to smooth the output of renewable plants and reduce the curtailment rate. This study addresses the energy storage sizing problem in bulk power systems. To capture the operating status of the power system more accurately, the authors use a dedicated power flow model which involves voltage and reactive power. The uncertainty of renewable generation is described via inexact probability distributions encapsulated in a data-driven Wasserstein-metric based ambiguity set, based on which the renewable energy curtailment rate is formulated as a distributionally robust chance constraint. The objective is to minimise the total investment cost, and the optimal sizing problem gives rise to a distributionally robust chance-constrained program, and is reformulated as a tractable linear program via conservative approximation. Case studies conducted on the modified IEEE 30-bus and 118-bus systems demonstrate the effectiveness and performance of the proposed approach.

References

    1. 1)
      • 18. Jabr, R.A., Dzafic, I., Pal, B.C.: ‘Robust optimization of storage investment on transmission networks’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 531539.
    2. 2)
      • 26. Sarkar, M.N.I., Meegahapola, L.G., Datta, M.: ‘Reactive power management in renewable rich power grids: a review of grid-codes, renewable generators, support devices, control strategies and optimization algorithms’, IEEE Access, 2018, 6, pp. 4145841489.
    3. 3)
      • 34. Nash, J.: ‘The bargaining problem’, Econometrica, 1950, 18, (2), pp. 155162.
    4. 4)
      • 35. Wu, L., Shahidehpour, M., Li, T.: ‘Stochastic security-constrained unit commitment’, IEEE Trans. Power Syst., 2007, 22, (2), pp. 800811.
    5. 5)
      • 3. Vargas, L.S., Bustos-Turu, G., Larrain, F.: ‘Wind power curtailment and energy storage in transmission congestion management considering power plants ramp rates’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 24982506.
    6. 6)
      • 17. Dehghan, S., Amjady, N.: ‘Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 765774.
    7. 7)
      • 22. Xie, W.: ‘On distributionally robust chance constrained programs with Wasserstein distance’, Math. Program., 2019, online access, https://doi.org/10.1007/s10107-019-01445-5.
    8. 8)
      • 20. Wiesemann, W., Kuhn, D., Sim, M.: ‘Distributionally robust convex optimization’, Oper. Res., 2014, 62, (6), pp. 13581376.
    9. 9)
      • 23. Bertsimas, D., Sim, M., Zhang, M.: ‘Adaptive distributionally robust optimization’, Manage. Sci., 2019, 65, (2), pp. 604618.
    10. 10)
      • 27. Yang, Z., Zhong, H., Bose, A., et al: ‘A linearized OPF model with reactive power and voltage magnitude: a pathway to improve the MW-only DC OPF’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 17341745.
    11. 11)
      • 19. Wang, S., Geng, G., Jiang, Q.: ‘Robust co-planning of energy storage and transmission line with mixed integer recourse’, IEEE Trans. Power Syst., 2019, 34, (6), pp. 47284738.
    12. 12)
      • 29. Duan, C., Fang, W., Jiang, L., et al: ‘Distributionally robust chance-constrained approximate AC-OPF with wasserstein metric’, IEEE Trans. Power Syst., 2018, 33, (5), pp. 49244936.
    13. 13)
      • 32. World Bank Group: ‘Global solar atlas’. Available at https://globalsolaratlas.info/.
    14. 14)
      • 31. Rockafellar, R.T., Uryasev, S.: ‘Optimization of conditional value-at-risk’, J. risk, 2018, 2, pp. 2142.
    15. 15)
      • 10. Yang, Y., Li, H., Aichhorn, A., et al: ‘Sizing strategy of distributed battery storage system with high penetration of photovoltaic for voltage regulation and peak load shaving’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 982991.
    16. 16)
      • 1. G. Council: ‘Global wind statistic 2017’, 2018. Available at https://gwec.net/members-area-market-intelligence/reports/.
    17. 17)
      • 21. Delage, E., Ye, Y.: ‘Distributionally robust optimization under moment uncertainty with application to data-driven problems’, Oper. Res., 2018, 58, (3), pp. 595612.
    18. 18)
      • 8. Dui, X., Zhu, G., Yao, L.: ‘Two-stage optimization of battery energy storage capacity to decrease wind power curtailment in grid-connected wind farms’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 32963305.
    19. 19)
      • 2. IEA-PVPS: ‘IEA-PVPS Annual Report 2017’, 2018. Available at http://www.iea-pvps.org/.
    20. 20)
      • 6. Burke, D.J., O'Malley, M.J.: ‘Factors influencing wind energy curtailment’, IEEE Trans. Sustain. Energy, 2011, 2, (2), pp. 185193.
    21. 21)
      • 30. Hota, A.C.A., Lygeros, J.: ‘Data-driven chance constrained optimization under wasserstein ambiguity sets’. 2019 American Control Conf. (ACC), Philadelphia, PA, USA, 2019.
    22. 22)
      • 11. Brekken, T.K.A., Yokochi, A., Jouanne, A.V., et al: ‘A framework for optimal placement of energy storage units within a power system with high wind penetration’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 434442.
    23. 23)
      • 5. Moeini-Aghtaie, M., Abbaspour, A., Fotuhi-Firuzabad, M.: ‘Incorporating large-scale distant wind farms in probabilistic transmission expansion planning-part I: theory and algorithm’, IEEE Trans. Power Syst., 2011, 27, (3), pp. 15851593.
    24. 24)
      • 28. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), p. 12-19.
    25. 25)
      • 33. Guo, Z.: ‘Data for optimal stroage sizing with DRO’, 2019. Available at https://github.com/ZhongjieGuo/Papers.
    26. 26)
      • 25. Yang, L., Xie, R., Wei, W., et al: ‘Coordinated planning of storage unit in a remote wind farm and grid connection line: a distributionally robust optimization approach’. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, May 2019.
    27. 27)
      • 12. Fortenbacher, P., Ulbig, A., Andersson, G.: ‘Optimal placement and sizing of distributed battery storage in low voltage grids using receding horizon control strategies’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 23832384.
    28. 28)
      • 14. Wen, S., Lan, H., Fu, Q.: ‘Economic allocation for energy storage system considering wind power distribution’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 644652.
    29. 29)
      • 13. Zhang, Y., Ren, S., Dong, Z.: ‘Optimal placement of battery energy storage in distribution networks considering conservation voltage reduction and stochastic load composition’, IET Renew. Power Gener., 2017, 11, (15), pp. 38623870.
    30. 30)
      • 4. China National Energy Administration: ‘Action plan of clean energy consumption (2018–2020)’, 2018. Available at http://www.ndrc.gov.cn/zcfb/gfxwj/201812.
    31. 31)
      • 15. Xiong, P., Singh, C.: ‘Optimal planning of storage in power systems integrated with wind power generation’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 232240.
    32. 32)
      • 7. Rosso, A.D.D., Eckroad, S.W.: ‘Energy storage for relief of transmission congestion’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 11381146.
    33. 33)
      • 24. Esfahani, P.M., Kuhn, D.: ‘Data-driven distributionally robust optimization using the wasserstein metric: performance guarantees and tractable reformulations’, Math. Program., 2017, 171, pp. 115166.
    34. 34)
      • 9. Brekken, T.K.A., Yokochi, A., Jouanne, A.V., et al: ‘Optimal energy storage sizing and control for wind power applications’, IEEE Trans. Sustain. Energy, 2011, 2, (1), pp. 6977.
    35. 35)
      • 16. Sedghi, M., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 304316.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0354
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0354
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address