access icon free Systematic literature review of photovoltaic output power forecasting

Since the harmful effects of climate warming on our planet were first observed, the use of renewable energy resources has been significantly increasing. Among the potential renewable energy sources, photovoltaic (PV) system installations keep continuously increasing world-wide due to its economic and environmental contributions. Despite its significant benefits, the inherent variability of PV power generation due to meteorological parameters can cause power management/planning problems. Thus, forecasting of PV output data (directly or indirectly) in an accurate manner is a critical task to provide stability, reliability, and optimisation of the grid systems. In considering the literature reviewed, there are various research items utilizing PV output power forecasting. In this study, a systematic literature review based on the search of primary studies (published between 2010 and 2020), which forecast PV power generation using machine learning and deep learning methods, is reported. The studies are evaluated based on the PV material used, their approaches, generated outputs, data set used, and the performance evaluation methods. As a result, gaps and improvable points in the existing literature are revealed, and suggestions which include novelties are offered for future works.

Inspec keywords: learning (artificial intelligence); renewable energy sources; photovoltaic power systems

Other keywords: world-wide; potential renewable energy sources; generated outputs; photovoltaic output power forecasting; PV output power forecasting; PV power generation; photovoltaic system installations; grid systems; economic contributions; environmental contributions; PV material; PV output data; renewable energy resources; systematic literature review

Subjects: Energy resources; Solar power stations and photovoltaic power systems; Knowledge engineering techniques

References

    1. 1)
      • 57. Mishra, M., Dash, P.B., Nayak, J., et al: ‘Deep learning and wavelet transform integrated approach for short-term solar PV power prediction’, Measurement, 2020, 166, p. 108250.
    2. 2)
      • 7. Wang, J., Li, P., Ran, R., et al: ‘A short-term photovoltaic power prediction model based on the gradient boost decision tree’, Appl. Sci., 2018, 8, (5), p. 689.
    3. 3)
      • 23. Leone, R.D., Pietrini, M., Giovannelli, A.: ‘Photovoltaic energy production forecast using support vector regression’, Neural Comput. Appl., 2015, 26, (8), pp. 19551962.
    4. 4)
      • 24. Zhang, Y., Beaudin, M., Taheri, R., et al: ‘Day ahead power output forecasting for small-scale solar photovoltaic electricity generators’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 22532262.
    5. 5)
      • 6. Antonanzas, J., Osorio, N., Escobar, R., et al: ‘Review of photovoltaic power forecasting’, Sol. Energy, 2016, 136, pp. 78111.
    6. 6)
      • 12. Roberts, S., Guariento, N.: ‘Building integrated photovoltaics: a handbook’ (Walter de Gruyter, 2009).
    7. 7)
      • 54. Izgi, E., Öztopal, A., Yerli, B., et al: ‘Short–mid-term solar power prediction by using artificial neural networks’, Sol. Energy, 2012, 86, (2), pp. 725733.
    8. 8)
      • 32. Chiang, P.H., Chiluvuri, S.P.V., Dey, S., et al: ‘Forecasting of solar photovoltaic system power generation using wavelet decomposition and bias-compensated random forest’. Ninth Annual IEEE Green Technologies Conf., Denver USA, 2017, pp. 260266.
    9. 9)
      • 44. Asrari, A., Wu, T.X., Ramos, B.: ‘A hybrid algorithm for short-term solar power prediction sunshine state case study’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 582591.
    10. 10)
      • 17. Kardakos, E.G., Alexiadis, M.C., Vagropoulos, S.I., et al: ‘Application of time series and artificial neural network models in short-term forecasting of PV power generation’. 48th Int. Universities Power Engineering Conf., Dublin Ireland, 2013, pp. 16.
    11. 11)
      • 16. Dong, Z.D., Yang, W.M., Reindl, T., et al: ‘Short-term solar irradiance forecasting using exponential smoothing state space model’, Energy, 2013, 55, pp. 11041113.
    12. 12)
      • 10. Jäger-Waldau, A.: ‘Research, solar cell production and market implementation of photovoltaics’, Renew. Energy Unit, 2008, 6, (3), pp. 2023.
    13. 13)
      • 25. Wang, F., et al: ‘Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting’, Energy Build., 2015, 86, pp. 427438.
    14. 14)
      • 37. Al-Dahidi, S., Ayadi, O., Adeeb, J., et al: ‘Extreme learning machines for solar photovoltaic power predictions’, Energies, 2018, 11, (10), p. 2725.
    15. 15)
      • 31. Cervone, G., Clemente-Harding, L., Alessandrini, S., et al: ‘Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble’, Renew. Energy, 2017, 108, pp. 274286.
    16. 16)
      • 52. Chai, M., Xia, F., Hao, S., et al: ‘PV power prediction based on LSTM with adaptive hyperparameter adjustment’, IEEE Access, 2019, 7, pp. 115473115486.
    17. 17)
      • 48. Abdel-Nasser, M., Mahmoud, K.: ‘Accurate photovoltaic power forecasting models using deep LSTM-RNN’, Neural Comput. Appl., 2019, 31, (7), pp. 27272740.
    18. 18)
      • 47. Lin, G.K., Li, L.L., Tseng, M.L., et al: ‘An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation’, J. Clean Prod., 2020, 253, p. 119966.
    19. 19)
      • 14. Jang, H.S., Bae, K.Y., Park, H.S., et al: ‘Solar power prediction based on satellite images and support vector machine’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 12551263.
    20. 20)
      • 49. Zhu, R., Guo, W., Gong, X.: ‘Short-term photovoltaic power output prediction based on k-fold cross-validation and an ensemble model’, Energies, 2019, 12, (7), p. 1220.
    21. 21)
      • 36. Ahmad, M.W., Mourshed, M., Rezgui, Y.: ‘Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression’, Energy, 2018, 164, pp. 465474.
    22. 22)
      • 2. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sust. Energy Rev., 2014, 39, pp. 748764.
    23. 23)
      • 60. Ospina, J., Newaz, A., Faruque, M.O.: ‘Forecasting of PV plant output using hybrid wavelet-based LSTM-DNN structure model’, IET Renew. Power Gener., 2019, 13, (7), pp. 10871095.
    24. 24)
      • 34. Hossain, M., Mekhilef, S., Danesh, M., et al: ‘Application of extreme learning machine for short term output power forecasting of three grid-connected PV systems’, J. Clean Prod., 2017, 167, pp. 395405.
    25. 25)
      • 62. Özçift, A., Kılınç, D., Bozyiğit, F.: ‘Application of grid search parameter optimized Bayesian logistic regression algorithm to detect cyberbullying in turkish microblog data’, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, 2019, 7, (3), pp. 355361.
    26. 26)
      • 38. Bugała, A., Zaborowicz, M., Boniecki, P., et al: ‘Short-term forecast of generation of electric energy in photovoltaic systems’, Renew. Sust. Energy Rev., 2018, 81, pp. 306312.
    27. 27)
      • 27. Persson, C., Bacher, P., Shiga, T., et al: ‘Multi-site solar power forecasting using gradient boosted regression trees’, Sol. Energy, 2017, 150, pp. 423436.
    28. 28)
      • 20. Amrouche, B., Pivert, X.: ‘Artificial neural network based daily local forecasting for global solar radiation’, Appl. Energy, 2014, 130, pp. 333341.
    29. 29)
      • 39. Son, Y., Park, J., Kim, H.: ‘Sensorless PV power forecasting in grid-connected buildings through deep learning’, Sensors, 2018, 18, (8), p. 2529.
    30. 30)
      • 40. Theocharides, S., Venizelou, V., Makrides, G., et al: ‘Day-ahead forecasting of solar power output from photovoltaic systems utilising gradient boosting machines’. Seventh World Conf. on Photovoltaic Energy Conversion, 2018, Waikoloa, HI, 2018, pp. 23712375.
    31. 31)
      • 9. Brereton, P., Kitchenham, B. A., Budgen, D., et al: ‘Lessons from applying the systematic literature review process within the software engineering domain’, J. Syst. Softw., 2007, 80, (4), pp. 571583.
    32. 32)
      • 29. Antonanzas, J., Urraca, R., Pernía-Espinoza, A., et al: ‘Single and blended models for day-ahead photovoltaic power forecasting’. Hybrid Artif. Intell. Syst., 2017, 10334, pp. 427434.
    33. 33)
      • 45. Liu, Z. F., Li, L. L., Tseng, M. L., et al: ‘Prediction short-term photovoltaic power using improved chicken swarm optimizer-extreme learning machine model’, J. Clean Prod., 2020, 248, p. 119272.
    34. 34)
      • 30. Bayındır, R., Yeşilbudak, M., Çolak, M., et al: ‘A novel application of Naive Bayes classifier in photovoltaic energy prediction’. 16th IEEE Int. Conf. on Machine Learning and Applications, Cancun Mexico, 2017, pp. 523527.
    35. 35)
      • 26. Liu, Z., Zhang, Z.: ‘Solar forecasting by K-nearest Neighbours method with weather classification and physical model’. North American Power Symp. (NAPS), Denver USA, 2016, pp. 16.
    36. 36)
      • 51. Almeida, M.P., Perpinan, O., Narvarte, L.: ‘PV power forecast using a nonparametric PV model’, Sol. Energy, 2015, 115, pp. 354368.
    37. 37)
      • 35. Wang, J., Ran, R., Zhou, Y.: ‘A short-term photovoltaic power prediction modelbasedon an FOS-ELM algorithm’, Appl. Sci., 2017, 7, (4), p. 423.
    38. 38)
      • 4. Zamo, M., Mestre, O., Arbogast, P., et al: ‘A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production, part I: deterministic forecast of hourly production’, Sol. Energy, 2014, 105, pp. 792803.
    39. 39)
      • 19. Mellit, A., Pavan, A. M., Benghanem, M.: ‘Least squares support vector machine for short-term prediction of meteorological time series’, Theor. Appl. Climatol., 2013, 111, (1–2), pp. 297307.
    40. 40)
      • 50. Chaouach, A., Kamel Rashad, M., Nagasaka, K.: ‘A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system’, Sol. Energy, 2010, 84, (12), pp. 22192229.
    41. 41)
      • 56. Wang, F., Xuan, Z., Zhen, Z., et al: ‘A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework’, Energy Convers. Manage., 2020, 212, p. 112766.
    42. 42)
      • 63. Kılınç, D., Özçift, A., Bozyiğit, F., et al: ‘TTC-3600: a new benchmark dataset for turkish text categorization’, J. Inf. Sci., 2017, 43, (2), pp. 174185.
    43. 43)
      • 42. Ramsami, P., Oree, V.: ‘A hybrid method for forecasting the energy output of photovoltaic systems’, Energy Convers. Manage., 2015, 95, pp. 406413.
    44. 44)
      • 8. Kitchenham, B., Brereton, O. P., Budgen, D., et al: ‘Systematic literature reviews in software engineering–a systematic literature review’, Inf. Softw. Technol., 2009, 51, (1), pp. 715.
    45. 45)
      • 3. Renewables 2019 – Analysis’, IEA, Available at https://www.iea.org/reports/renewables, 2019.
    46. 46)
      • 1. Dorvlo, A.S., Jervase, J.A., Al-Lawati, A.: ‘Solar radiation estimation using artificial neural networks’, Appl. Energy, 2002, 71, (4), pp. 307319.
    47. 47)
      • 33. Ehsan, M.R., Simon, S.P., Venkateswaran, P.R.: ‘Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron’, Neural Comput. Appl., 2017, 28, (12), pp. 39813992.
    48. 48)
      • 53. Dolara, A., Leva, S., Manzolini, G.: ‘Comparison of different physical models for PV power output prediction’, Sol. Energy, 2015, 119, pp. 8399.
    49. 49)
      • 58. Khandakar, A., EH Chowdhury, M., Khoda Kazi, M., et al J.: ‘Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar’, Energies, 2019, 12, (14), p. 2782.
    50. 50)
      • 5. Missaoui, R., Joumaa, H., Ploix, S., et al: ‘Managing energy smart homes according to energy prices: analysis of a building energy management system’, Energy Build., 2014, 71, pp. 155167.
    51. 51)
      • 22. Mandal, P., Madhira, S.T.S., Haque, A.U., et al: ‘Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques’, Procedia Comput. Sci., 2012, 12, pp. 332337.
    52. 52)
      • 55. Yona, A., Senjyu, T., Funabashi, T., et al: ‘Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 527533.
    53. 53)
      • 65. Steinberg, D.: ‘CART: classification and regression trees’, in Wu, X., Kumar, V. (Eds.): ‘The top ten algorithms in data mining’ (CRC Press, US, 2019), pp. 193216.
    54. 54)
      • 11. Prasad, D., Snow, M.: ‘Designing with solar power: a source book for building integrated photovoltaics’ (Routledge, Netherlands, 2014).
    55. 55)
      • 66. Başaran, K., Özçift, A., Kılınç, D.: ‘A new approach for prediction of solar radiation with using ensemble learning algorithm’, Arab. J. Sci. Eng., 2019, 44, (8), pp. 71597171.
    56. 56)
      • 59. Kim, J.G., Kim, D.H., Yoo, W.S., et al: ‘Daily prediction of solar power generation based on weather forecast information in korea’, IET Renew. Power Gener., 2017, 11, (10), pp. 12681273.
    57. 57)
      • 18. Mellit, A., Pavan, A.M.: ‘A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at trieste, Italy’, Sol. Energy, 2010, 84, (5), pp. 807821.
    58. 58)
      • 43. Huang, J., Perry, M.: ‘A semi-empirical approach using gradient boosting and k-nearest neighbours regression for GEFCom2014 probabilistic solar power forecasting’, Int. J. Forecast., 2016, 32, (3), pp. 10811086.
    59. 59)
      • 41. Kwon, Y., Kwasinski, A., Kwasinski, A.: ‘Solar irradiance forecast using naïve Bayes classifier based on publicly available weather forecasting variables’, Energies, 2019, 12, (8), p. 1529.
    60. 60)
      • 64. Ke, G., Meng, Q., Finley, T., et al: ‘Lightgbm: a highly efficient gradient boosting decision tree’. Adv. Neural. Inf. Process. Syst., 2017, pp. 31463154.
    61. 61)
      • 21. Baharin, K.A., Rahman, H.A., Hassan, M.Y., et al: ‘Hourly irradiance forecasting in Malaysia using support vector machine’. IEEE Conf. on Energy Conversion, Johor Bahru Malaysia, 2014, pp. 185190.
    62. 62)
      • 61. Bozyiğit, A., Utku, S., Nasiboğlu, E.: ‘Cyberbullying detection by using artificial neural network models’. Fourth Int. Conf. on Computer Science and Engineering (UBMK), Antalya, 2019, pp. 520524.
    63. 63)
      • 46. Wang, K., Qi, X., Liu, H.: ‘Photovoltaic power forecasting-based LSTM-convolutional network’, Energy’, 2019, 189, p. 116225.
    64. 64)
      • 13. Chen, C., Duan, S., Cai, T., et al: ‘Online 24-h solar power forecasting based on weather type classification using artificial neural network’, Sol. Energy, 2011, 85, (11), pp. 28562870.
    65. 65)
      • 28. Wolff, B., Kühnert, J., Lorenz, E., et al: ‘Comparing support vector regression for PV power forecasting to a physical modeling approach using measurement, numerical weather prediction, and cloud motion data’, Sol. Energy, 2016, 135, pp. 197208.
    66. 66)
      • 15. Chen, S.X., Gooi, H.B., Wang, M.Q.: ‘Solar radiation forecast based on fuzzy logic and neural networks’, Renew. Energy, 2013, 60, pp. 195201.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0351
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0351
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading