Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Comprehensive design and control methodology for DC-powered satellite electrical subsystem based on PV and battery

The design of electrical power subsystem of a satellite is challenging since it involves many components and depends on multiple parameters including mission duration, satellite orbit, eclipse times and etc. In contrast to the existing mission specific designs, we propose a generalized and comprehensive method to design and size key EPS elements: PV array and battery, which are integral for mission success. For battery, the proposed design incorporates battery cell characteristics, round trip efficiency, degradation, eclipse load profile and operating modes. The proposed design of PV array takes into account orbit inclination and altitude. In addition, structure and geometry of PV array are also considered and used for irradiance forecasting. Reliability, power margins and power fraction for summer solstice are also factored in the design. For the planning and development of operational strategy, parameter limits are determined for depth of discharge, initial state-of-charge, final state-of-charge and end-of-charge voltage of the battery. The controller design is also presented for the EPS. The effectiveness of the proposed design methodology is verified by a case study of Mysat-1, an imaging nanosatellite developed and launched by Khalifa University.

References

    1. 1)
      • 10. Langer, M., Bouwmeester, J.: ‘Reliability of CubeSats-statistical data, developers' Beliefs and the way forward’, 30th Annual AIAA/USU Conference on Small Satellites (Semantic scholar, Virginia, USA., 2016), pp. 112.
    2. 2)
      • 3. Yahyaabadi, A., Driedger, M., Parthasarathy, V., et al: ‘Manitobasat-1: making space for innovation’. 2019 IEEE Canadian Conf. of Electrical and Computer Engineering (CCECE), Edmonton, Canada, 2019, pp. 14.
    3. 3)
      • 5. Nieto-Peroy, C., Emami, M.R.: ‘Cubesat mission: from design to operation’, Appl. Sci., 2019, 9, p. 3110.
    4. 4)
      • 27. Belkaid, A., Gaubert, J.-P., Gherbi, A.: ‘Design and implementation of a high-performance technique for tracking PV peak power’, IET Renew. Power Gener., 2016, 11, pp. 9299.
    5. 5)
      • 13. Yan, G.-G., Cui, X.-Z., Li, J.-H., et al: ‘Design of the control strategy for improving the service life of battery in wind-PV-ES hybrid generation system’, 2013.
    6. 6)
      • 25. Patel, M.R.: ‘Spacecraft power systems’ (CRC press, England, 2004).
    7. 7)
      • 1. Shao, T.-Y., Kao, S.-L., Su, C.-M.: ‘Taiwan AIS CubeSat tracking system for marine safety’. 2019 Int. Conf. on Intelligent Computing and its Emerging Applications (ICEA), National Cheng Kung University, East District, Taiwan, 2019, pp. 7073.
    8. 8)
      • 4. Damkjar, S., Cupido, C., Nokes, C., et al: ‘Design and verification of a robust release mechanism for CubeSat deployables’. 2019 IEEE Canadian Conf. of Electrical and Computer Engineering (CCECE), Edmonton, Canada, 2019, pp. 14.
    9. 9)
      • 21. Asif, S., Li, Y.: ‘Spacecraft power subsystem technology selection’. 2006 Vehicle Power and Propulsion Conf., VPPC'06, Windsor, UK., 2006, pp. 16.
    10. 10)
      • 17. Lynch, B., Wallace, C.: ‘Cubesat electronic power system’ (Santa Clara University, California, USA., 2014).
    11. 11)
      • 8. Raghoebarsing, A., Kalpoe, A.: ‘Performance and economic analysis of a 27 kW grid-connected photovoltaic system in Suriname’, IET Renew. Power Gener., 2017, 11, pp. 15451554.
    12. 12)
      • 23. Popescu, O.: ‘Power budgets for cubesat radios to support ground communications and inter-satellite links’, IEEE Access, 2017, 5, pp. 1261812625.
    13. 13)
      • 19. Jang, S.-S., Choi, J.: ‘Energy balance analysis of small satellite in low earth orbit (LEO)’. IEEE 2nd Int. Power and Energy Conf., 2008. PECon 2008, Malaysia, 2008, pp. 967971.
    14. 14)
      • 16. Catalina, A., Alaíz, C.M., Dorronsoro, J.: ‘Combining numerical weather predictions and satellite data for PV energy nowcasting’, IEEE Trans. Sustain. Energy, 2019, p. 1.
    15. 15)
      • 6. Gregorio, A., Alimenti, F.: ‘Cubesats for future science and internet of space: challenges and opportunities’. 2018 25th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS), Bordeaux, France, 2018, pp. 169172.
    16. 16)
      • 29. Khan, O., Moursi, M.S.E., Zeineldin, H.H., et al: ‘Benchmark model for multi-orbital transient analysis of satellite electrical power subsystem’, IET Renew. Power Gener., 2020, 14, pp. 286296.
    17. 17)
      • 20. Lee, J., Kim, E., Shin, K.G.: ‘Design and management of satellite power systems’. 2013 IEEE 34th Real-Time Systems Symp. (RTSS), Vancouver, BC, Canada, 2013, pp. 97106.
    18. 18)
      • 26. Khan, O., Xiao, W.: ‘An efficient modeling technique to simulate and control submodule-integrated PV system for single-phase grid connection’, IEEE Trans. Sustain. Energy, 2016, 7, pp. 96107.
    19. 19)
      • 14. Torre, S.D.L., González-González, J.M., Aguado, J.A., et al: ‘Optimal battery sizing considering degradation for renewable energy integration’, IET Renew. Power Gener., 2019, 13, pp. 572577.
    20. 20)
      • 7. Loghmari, I., Timoumi, Y.: ‘Improvement global solar radiation estimation’, IET Renew. Power Gener., 2017, 11, pp. 9961004.
    21. 21)
      • 2. Acharya, S., Alshehhi, F., Tsoupos, A., et al: ‘Modeling and design of electrical power vdsubsystem for CubeSats’. 2019 Int. Conf. on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 2019, pp. 16.
    22. 22)
      • 22. Jayashree, E., Uma, G.: ‘Soft-switched-controlled-ultra lift luo converter’, IET Power Electron., 2011, 4, pp. 151158.
    23. 23)
      • 15. Satapathy, P., Dhar, S., Dash, P.K.: ‘Performance validation of battery management system under prediction error for photovoltaic based distribution system’, IET Renew. Power Gener., 2018, 12, pp. 702717.
    24. 24)
      • 18. Peng, L., Jun, Z., Xiaozhou, Y., et al: ‘Design and validation of modular MPPT electric power system for multi-U CubeSat’. 2017 3rd IEEE Int. Conf. on Control Science and Systems Engineering (ICCSSE), Beijing, China, 2017, pp. 374377.
    25. 25)
      • 9. Lamb, D.A., Irvine, S.J., Clayton, A.J., et al: ‘Lightweight and low-cost thin film photovoltaics for large area extra-terrestrial applications’, IET Renew. Power Gener., 2015, 9, pp. 420423.
    26. 26)
      • 11. Neto, J.T.D.C., Salazar, A.O., Lock, A.S.: ‘Design and operation of an OCC-based scheme for a stand-alone PV system powering DC loads’, IET Renew. Power Gener., 2019, 13, pp. 21232136.
    27. 27)
      • 12. Wang, F., Feng, T., Chen, X.: ‘Design and optimisation of a wireless power transfer system for satellite application’, IET Power Electron., 2019, 12, pp. 25862598.
    28. 28)
      • 24. Rickman, S.L.: ‘Introduction to On-orbit thermal environments’. Thermal and Fluids Analysis Workshop, Cleveland, Ohio, USA., 2014.
    29. 29)
      • 28. Shaw, P.: ‘Modelling and analysis of an analogue MPPT-based PV battery charging system utilising dc–dc boost converter’, IET Renew. Power Gener., 2019, 13, pp. 19581967.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0225
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0225
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address