Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust control of a floating OWC WEC under open-switch fault condition in one or in both VSCs

The operation and maintenance activity of off-shore wind turbines (WTs) increases the cost of the generated energy. Although significant efforts have been made to improve the reliability of the mechanical subassemblies, electrical and electronic subassemblies fail more frequently, causing undesirable downtimes and loss of revenues. Since off-shore WTs and wave energy converters (WECs) share the electrical and electronic subassemblies, the reliability of WECs is expected to be affected by the same causes. This study presents a robust model predictive control for a WEC consisting of an oscillating water column (OWC) installed in a point absorber. The control system is capable of dealing with open switch faults in one or two insulated-gate bipolar transistors of the same arm in any of the voltage source converters (VSCs), or even in both VSCs at the same time. The system allows the OWC WEC to generate energy, although under certain restrictions, thereby reducing the urgency of repair and loss of revenues. The performance of the proposed approach is tested for several cases of open switch faults, experimentally in the laboratory using an OWC WEC emulator.

References

    1. 1)
      • 17. Bailey, H., Robertson, B.R.D., Buckham, B.J.: ‘Wave-to-wire simulation of a floating oscillating water column wave energy converter’, Ocean Eng., 2016, 125, pp. 248260.
    2. 2)
      • 10. Zarei, M.E., Gupta, M., Ramirez, D., et al: ‘Switch fault tolerant model-based predictive control (MPC) of a VSC connected to the grid’, IEEE J. Emerging Sel. Top. Power Electron., 2019, p. 1 doi: 10.1109/JESTPE.2019.2956042.
    3. 3)
      • 1. Faulstich, S., Hahn, B., Tavner, P.J.: ‘Wind turbine downtime and its importance for offshore deployment’, Wind Energy, 2011, 14, (3), pp. 327337.
    4. 4)
      • 27. Zarei, M.E., Nicolas, C.V., Arribas, J.R., et al: ‘Four-switch three-phase operation of grid-side converter of doubly fed induction generator with three vectors predictive direct power control strategy’, IEEE Trans. Ind. Electron., 2019, 66, (10), pp. 77417752.
    5. 5)
      • 12. Ni, K., Hu, Y., Chen, G., et al: ‘Fault-tolerant operation of DFIG-WT with four-switch three-phase grid-Side converter by using simplified SVPWM technique and compensation schemes’, IEEE Trans. Ind. Appl., 2019, 55, (1), pp. 659669.
    6. 6)
      • 3. Garrido, I., Garrido, A.J., Lekube, J., et al: ‘Oscillating water column control and monitoring’. OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, 2016, pp. 16.
    7. 7)
      • 26. Zarei, M.E., Ramirez, D., Veganzones, C., et al: ‘Predictive direct control of SPMS generators applied to the machine side converter of an OWC power plant’, IEEE Trans. Power Electron., 2020, 35, (7), pp. 67196731.
    8. 8)
      • 18. Henriques, J.C.C., Gato, L.M.C., Falcão, A.F.O., et al: ‘Latching control of a floating oscillating-water-column wave energy converter’, Renew. Energy, 2016, 90, pp. 229241.
    9. 9)
      • 8. Zhou, D., Li, X., Tang, Y.: ‘Multiple-vector model-predictive power control of three-phase four-switch rectifiers with capacitor voltage balancing’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58245835.
    10. 10)
      • 11. Ni, K., Hu, Y., Lagos, D.T., et al: ‘Highly reliable back-to-back power converter without redundant bridge arm for doubly fed induction generator-based wind turbine’, IEEE Trans. Ind. Appl., 2019, 55, (3), pp. 30243036.
    11. 11)
      • 28. Justino, P.A.P., Falcao, A.F.D.O.: ‘Rotational speed control of an OWC wave power plant’, Am. Soc. Mech. Eng. Digit. Collect., 1999, 121, (2), pp. 6570.
    12. 12)
      • 4. Schulte, H., Gauterin, E.: ‘Input-to-state stability condition for passive fault-tolerant control of wave and wind energy converters’, IFAC-PapersOnLine, 2015, 48, (21), pp. 257262.
    13. 13)
      • 21. Gomes, R.P.F., Henriques, J.C.C., Gato, L.M.C., et al: ‘Wave power extraction of a heaving floating oscillating water column in a wave channel’, Renew. Energy, 2016, 99, pp. 12621275.
    14. 14)
      • 14. Zeng, Z., Zheng, W., Zhao, R., et al: ‘Modeling, modulation and control of the three-phase four-switch PWM rectifier under balanced voltage’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 48924905.
    15. 15)
      • 15. Uddin, M.N., Radwan, T.S., Rahman, M.A.: ‘Fuzzy-logic-controller-based cost-effective four-switch three-phase inverter-fed IPM synchronous motor drive system’, IEEE Trans. Ind. Appl., 2006, 42, (1), pp. 2130.
    16. 16)
      • 2. Johannesson, P., Svensson, T., Santandrea, F., et al: ‘Reliability Guidance for Marine Energy Converters’, RiaSor: Stromness, Scotland, December 2016. Available at: http://riasor.com/wpcontent/uploads/2016/12/ReliabilityGuidanceMECs_v1.0_20161216.pdf.
    17. 17)
      • 5. Blanke, M., Kinnaert, M., Lunze, J., et al: ‘Diagnosis and fault-tolerant control’ (Springer, Berlin, 2006).
    18. 18)
      • 7. Liu, Y.-C., Ge, X., Tang, Q., et al: ‘Model predictive current control for four-switch three-phase rectifiers in balanced grids’, Electron. Lett., 2017, 53, (1), pp. 4446.
    19. 19)
      • 9. Yu, H.-C., Lin, C.-K., Lai, Y.-S., et al: ‘Two-vector-based modeless predictive current control for four-switch inverter-fed synchronous reluctance motors emulating the six-switch inverter operation’, Electron. Lett., 2016, 52, (14), pp. 12441246.
    20. 20)
      • 29. Ramirez, D., Venkataramanan, G.: ‘Development system for wireless control applied to renewable power plants’, IEEE Trans. Sustain. Energy, 2017, 9, (3), pp. 13281336.
    21. 21)
      • 25. Sun, T., Nielsen, S.: ‘Semi-active feedforward control of a floating OWC point absorber for optimal power take-off’, IEEE Trans. Sustain. Energy, 2020, 11, (3), pp. 13001308.
    22. 22)
      • 23. Ni, K., Hu, Y., Liu, Y., et al: ‘Performance analysis of a four-switch three-phase grid-Side converter with modulation simplification in a doubly-fed induction generator-based wind turbine (DFIG-WT) with different external disturbances’, Energies, 2017, 10, (5), p. 706.
    23. 23)
      • 16. Badsi B., E., Bouzidi, B., Masmoudi, A.: ‘DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 35283538.
    24. 24)
      • 6. Liu, T.-H., Fu, J.-R., Lipo, T.A.: ‘A strategy for improving reliability of field-oriented controlled induction motor drives’, IEEE Trans. Ind. Appl., 1993, 29, (5), pp. 910918.
    25. 25)
      • 24. Zarei, M.E., Ramirez, D., Nicolas, C.V., et al: ‘Three-phase four-switch converter for SPMS generators based on model predictive current control for wave energy applications’, IEEE Trans. Power Electron., 2020, 35, (1), pp. 289302.
    26. 26)
      • 13. Zeng, Z., Zheng, W., Zhao, R.: ‘Performance analysis of the zero-voltage vector distribution in three-phase four-switch converter using a space vector approach’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 260273.
    27. 27)
      • 19. Henriques, J.C.C.C.C., Portillo, J.C.C.C.C., Gato, L.M.C.M.C., et al: ‘Design of oscillating-water-column wave energy converters with an application to self-powered sensor buoys’, Energy, 2016, 112, pp. 852867.
    28. 28)
      • 20. Falnes, J., Perlin, M.: ‘Ocean waves and oscillating systems: linear interactions including wave-energy extraction’, Appl. Mech. Rev., 2003, 56, (1), pp. B3B3.
    29. 29)
      • 22. Falcao, A.F.D.O., Justino, P.A.P.: ‘OWC wave energy devices with air flow control’, Ocean Eng.., 1999, 26, (12), pp. 12751295.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0203
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0203
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address