Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Voltage violation in four-wire distribution networks integrated with rooftop PV systems

Integration of rooftop photovoltaic (PV) systems in a three-phase four-wire distribution network cause voltage-violations namely voltage-rise and voltage unbalance. This study investigates the factors that affect both the voltage-rise and voltage unbalance in low voltage distribution network integrated with the rooftop PV systems. The concerning factors are classified into active factors such as; loads active powers, PV active powers, and bus reactive powers, and passive factors such as; numbers of feeder buses and neutral-grounded resistances. The study also determines the factors conditions at which the highest values of both voltage-rise and voltage unbalance occurred. Moreover, the most and least significant effects of individual factors on both voltage-rise and voltage unbalance are studied. The studied system is simulated and implemented in MATLAB software environment and the feeder loads are modelled based on Back–Forward Sweep method. The simulation results identify that the conditions of the worst voltage-rise and voltage unbalance cases depend on the collective influence of the studied factors.

References

    1. 1)
      • 13. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Voltage imbalance analysis in residential low voltage distribution networks with rooftop PVs’, Electr. Power Syst. Res., 2011, 81, (9), pp. 18051814.
    2. 2)
      • 3. EN 50160. ‘Voltage Characteristics of Electricity Supplied by Public Distribution Systems’, May 2005.
    3. 3)
      • 5. Samadi, A., Eriksson, R., Söder, L., et al: ‘Coordinated active power-dependent voltage regulation in distribution grids with PV Systems', IEEE Trans. Power Deliv., 2014, 29, (3), pp. 14541464.
    4. 4)
      • 27. Murty, P.S.R.: ‘Chapter 15 – unbalanced fault Analysis', Murty, P.S.R. (Eds.): ‘Electrical power Systems' (Elsevier Ltd, 2017), pp. 341382, https://doi.org/10.1016/B978-0-08-101111-9.00012-4.
    5. 5)
      • 22. Csatár, J., Dán, A.: ‘Novel load flow method for networks with multipoint-grounded-neutral and phase-to-neutral connected equipment’, Int. J. Electr. Power Energy Syst., 2019, 107, pp. 726734.
    6. 6)
      • 17. Nour, A.M.M., Hatata, A.Y., Helal, A.A., et al: ‘Review on voltage violation mitigation techniques of distribution networks with distributed rooftop photovoltaic systems’, IET Gener. Transm. Distrib., 2020, 14, (3), pp. 349361.
    7. 7)
      • 16. Eftekharnejad, S., Vittal, V., Heydt, G.T., et al: ‘Impact of increased penetration of photovoltaic generation on power systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 893901.
    8. 8)
      • 23. Zhang, Y., Xu, Y., Yang, H., et al: ‘Voltage regulation-oriented co-planning of distributed generation and battery storage in active distribution networks’, Int. J. Electr. Power Energy Syst., 2019, 105, pp. 7988.
    9. 9)
      • 8. Shahnia, F., Wolfs, P.J., Ghosh, A.: ‘Voltage unbalance reduction in low voltage feeders by dynamic switching of residential customers among three phases’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 13181327.
    10. 10)
      • 1. Bollen, M., Hassan, F.: ‘Voltage magnitude variations’, in: ‘Integration of distributed generation in the power system’ (IEEE Press, Hoboken, New Jersey, 2011, 1st edn.) pp. 141222.
    11. 11)
      • 2. Nour, A.M.M., Hatata, A.Y., Helal, A.A., et al: ‘Rooftop PV systems with distributed batteries for voltage unbalance mitigation in low voltage radial feeders’, J. Renew. Sustain. Energy, 2018, 10, pp. 120.
    12. 12)
      • 14. Namin, M.H., Agelidis, V.G.: ‘Voltage sensitivity study of LV/MV networks under high penetration of photovoltaic generation considering residential and industrial load profiles’. IEEE 39th Photovoltaic Specialists Conf. (PVSC), Tampa, FL, 2013, pp. 23092314.
    13. 13)
      • 12. Shahnia, F., Majumder, R., Ghosh, A., et al: ‘Sensitivity analysis of voltage imbalance in distribution networks with rooftop PVs’. IEEE PES General Meeting, Providence, RI, 2010, pp. 18.
    14. 14)
      • 20. Castro, J.R., Saad, M., Lefebvre, S., et al: ‘Optimal voltage control in distribution network in the presence of DGs’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 239247.
    15. 15)
      • 19. Muttqi, K.M., Aghaei, J., Askarpour, M., et al: ‘Minimizing the steady-state impediments to solar photovoltaics’, Renew. Sustain. Energy Rev., 2017, 79, pp. 13291345.
    16. 16)
      • 18. Jabr, R.A.: ‘Minimum loss operation of distribution networks with photovoltaic generation’, IET Renew. Power Gener., 2014, 8, (1), pp. 3344.
    17. 17)
      • 9. Nour, A.M.M., Hatata, A.Y., Helal, A.A., et al: ‘Distribution network line power loss evaluation with grid connected rooftop photovoltaic systems utilizing over voltage mitigation techniques’. IEEE 7th Int. Conf. on Power and Energy (PECon), Kuala Lumpur, Malaysia, 2018, pp. 2328.
    18. 18)
      • 4. Zhao, J., Li, Y., Li, P., et al: ‘Local voltage control strategy of active distribution network with PV reactive power optimization'. IEEE Power & Energy Society General Meeting, Chicago, USA, 2017, pp. 15.
    19. 19)
      • 25. Azizivahed, A., Narimani, H., Naderi, E., et al: ‘A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration’, Energy, 2017, 138, pp. 355373.
    20. 20)
      • 21. Yengejeh, H.H., Shahnia, F., Islam, S.M.: ‘Impact of distributed rooftop photovoltaic systems on short-circuit faults in the supplying low voltage networks’, Electr. Power Compon. Syst., 2017, 45, (20), pp. 22572274.
    21. 21)
      • 26. Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: ‘A three-phase power flow approach for integrated 3-wire MV and 4-wire multigrounded LV networks with rooftop solar PV’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17281737.
    22. 22)
      • 7. Chua, K.H., Lim, Y.S., Taylor, P., et al: ‘Energy storage system for mitigating voltage unbalance on low-voltage networks with photovoltaic systems’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 7831790.
    23. 23)
      • 10. El-Naggar, A., Erlich, I.: ‘Control approach of three-phase grid-connected PV inverters for voltage unbalance mitigation in low-voltage distribution grids’, IET Renew. Power Gener., 2016, 10, (10), pp. 15771586.
    24. 24)
      • 11. Haque, M.M., Wolfs, P.: ‘A review of high PV penetrations in LV distribution networks: present status, impacts and mitigation measures’, Renew. Sustain. Energy Rev., 2016, 62, pp. 11951208.
    25. 25)
      • 15. Tonkoski, R., Turcotte, D., EL-Fouly, T.H.M.: ‘Impact of high PV penetration on voltage profiles in residential neighborhoods’, IEEE Trans. Sustain. Energy, 2012, 3, (3), pp. 518527.
    26. 26)
      • 24. Bokhari, A., Alkan, A., Dogan, R., et al: ‘Experimental determination of the ZIP coefficients for modern residential, commercial, and industrial loads’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 13721381.
    27. 27)
      • 6. Lysorng, O., Somboon, S.: ‘A voltage rise mitigation strategy under voltage unbalance for a grid-connected photovoltaic system’, CEDIA Comput. Sci., 2016, 86, pp. 309312.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0174
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0174
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address