Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimising power system frequency stability using virtual inertia from inverter-based renewable energy generation

The objective of this study is to optimise the use of virtual inertia given a virtual inertia budget and a network topology. Following a brief investigation into inertia distribution, it was observed that distributed inertia is more effective than centralised inertia for a large and sparse power system network. A subsection of the South African transmission network, the Western Transmission network, is expected to host large-scale inverter-based generation. The total power system inertia is in decline due to the large-scale integration of inverter-based renewable energy generation. In the literature, mitigation methods such as virtual inertia and ‘noise-cancelling’ network topology design has been proposed to improve frequency stability. In this study, the Western Transmission network is modelled as a network of coupled oscillators. A state-space model for the power system network is developed with virtual inertia as a feedback control loop. The -norm is used to design optimal feedback control through virtual inertia allocation/distribution, to increase power system frequency stability. The results show that the optimal distribution significantly improves system frequency stability by decreasing the rate of change of frequency and delaying the time to reach similar frequency nadir values.

References

    1. 1)
      • 47. Chiang, H.-D., Wu, F.F., Varaiya, P.P.: ‘Foundations of direct methods for power system transient stability analysis’, IEEE Trans. Circuits Syst., 1987, 34, (2), pp. 160173.
    2. 2)
      • 38. Poolla, B.K., Bolognani, S., Dörfler, F.: ‘Optimal placement of virtual inertia in power grids’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 62096220.
    3. 3)
    4. 4)
      • 18. Farmer, W.J., Rix, A.J.: ‘Using inverter-based wind turbine generation to provide virtual inertia for the future South African power system’. SAUPEC, Johannesburg, South Africa, 2018.
    5. 5)
    6. 6)
    7. 7)
      • 31. Task force with members from REE, Terna, TransnetBW, 50Hertz Transmission, RTE, Swissgrid and Energinet.dk: ‘Frequency stability evaluation criteria for the synchronous zone of continental europe’, European Network of Transmission System Operators for Electricity (entsoe), 2016.
    8. 8)
      • 9. Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) GmbH: ‘Assessing the impact of increasing shares of variable generation on system operations in South Africa’. Flexibility study report prepared for Eskom and Department of Energy, 2017.
    9. 9)
      • 16. Aho, J., Buckspan, A., Laks, J., et al: ‘Tutorial of wind turbine control for supporting grid frequency through active power control’. 2012 American Control Conf., Montreal, Canada, 27–29 June 2012.
    10. 10)
      • 40. Semlyen, A.: ‘Analysis of disturbance propagation in power systems based on a homogeneous dynamic model’, IEEE Trans. Power Appar. Syst., 1974, PAS-93, pp. 676684.
    11. 11)
      • 25. Youssef, K.H., Wahba, M.A., Yousef, H.A., et al: ‘A new method for voltage and frequency control of stand-alone self-excited induction generator using PWM converter with variable DC link voltage’. 2008 American Control Conf., Seattle, WA, USA, 2008.
    12. 12)
    13. 13)
      • 19. Farmer, W.J., Rix, A.J.: ‘Current methods for PV generation to participate in the inertial response of a power system’. SASEC, Durban, South Africa, 2018.
    14. 14)
      • 23. Juankorena, X., Esandi, I., Lopez, J., et al: ‘Method to enable variable speed wind turbine primary regulation’. Int. Conf. on Power Engineering, Energy and Electrical Drives, Lisbon, Portugal, 2009, pp. 495500.
    15. 15)
      • 34. Pirani, M., Simpson-Porco, J.W., Fidan, B.: ‘System-theoretic performance metrics for low-inertia stability of power networks’. 2017 IEEE 56th Annual Conf. on Decision and Control (CDC), Melbourne, VIC, Australia, 2017.
    16. 16)
      • 8. Svenska kraftnat, Statnett, Fingrid and Energinet.dk: ‘Challenges and opportunities for the Nordic power system’, Technical report, 2016.
    17. 17)
      • 14. Ulbig, A., Borsche, T.S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’, IFAC Proceedings Volumes (IFAC-PapersOnline), 2014, 19, pp. 72907297.
    18. 18)
      • 15. Grid Connection Code for RPPs in South Africa: ‘Grid connection code for renewable power plants (RPPs) connected to the electricity transmission system (TS) or the distribution system (DS) in South Africa’. Version 2.9, July 2016.
    19. 19)
      • 12. Fitzgerald, A., Kingsley, C., Umans, S.: ‘Electric machinery’ (McGraw-Hill, Boston, Mass. [u.a.], 2009, 6th edn.), p. p 178.
    20. 20)
      • 26. Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2013, 54, pp. 244254.
    21. 21)
      • 42. Xu, Y., Wen, F., Ledwich, G., et al: ‘Electromechanical wave in power systems: theory and applications’, J. Modern Power Syst. Clean Energy, 2014, 2, pp. 163172163–172.
    22. 22)
      • 11. Kyriakides, E., Polycarpou, M. (Eds.): ‘Intelligent monitoring, control, and security of critical infrastructure systems’ (Springer-Verlag, Berlin Heidelberg (Germany), 2015). Available at http://www.springer.com/cda/content/document/cdadownloaddocument/9783662441596-c2.pdf?SGWID=0-0-45-1477627-p176840025.
    23. 23)
      • 48. Dorfler, F., Bullo, F.: ‘Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators’. Proc. of the 2010 American Control Conf., Baltimore, MD, 2010, pp. 930937.
    24. 24)
      • 3. World wind energy report 2010’. Proc. 10th World Wind Energy Conf., Cairo, Egypt, 2011.
    25. 25)
      • 35. Tyloo, M., Pagnier, L., Jacquod, P., et al: ‘The key player problem in complex oscillator networks and electric power grids: resistance centralities identify local vulnerabilities’, Sci. Adv., 2019, 5, (11), p. eaaw8359, [Online]. Available: http://dx.doi.org/10.1126/sciadv.aaw8359.
    26. 26)
      • 27. Jouini, T., Arghir, C., Dorfler, F.: ‘Grid-forming Control for Power Converters based on Matching of Synchronous Machines’. June 2017. Available at http://control.ee.ethz.ch/floriand/docs/Articles/Jouini-Arghir-Dorfler-2017.pdf.
    27. 27)
      • 13. Miller, N.W., Clark, K.: ‘Advanced controls enable wind plants to provide ancillary services’. IEEE Power and Energy Society General Meeting, Providence, RI, USA, 2010.
    28. 28)
      • 49. den Bergh, K.V., Delarue, E., D'haeseleer, W.: ‘DC power flow in unit commitment models’. TME Working Paper - Energy and Environment, WP EN2014-12, Leuven, Belgium, 2014.
    29. 29)
      • 21. Seyedi, M., Bollen, M., STRI: ‘The utilization of synthetic inertia from wind farms and its impact on existing speed governors and system performance’. Part 2 Report of Vindforsk Project V-369, January 2013.
    30. 30)
      • 4. Bayer, E.: ‘Report on the German power system’, Agora Energiewende, 2015, 1.01, pp. 148.
    31. 31)
      • 44. Eto, J.H, et al: ‘Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation’. The Lawrence Berkeley National Laboratory, LBNL-4142E, 2010.
    32. 32)
      • 30. Ronellenfitsch, H., Dunkel, J., Wilczek, M.: ‘Optimal noise-canceling networks’, Phys. Rev. Lett., 2018, 121.20, p. 208301.
    33. 33)
      • 28. Erlich, I., Wilch, M.: ‘Primary frequency control by wind turbines’. IEEE Power and Energy Society General Meeting, Providence, RI, USA, 2010.
    34. 34)
      • 36. Markovic, U., Stanojev, O., Aristidou, P., et al: ‘Understanding stability of low-inertia systems’, Res. Gate (Preprint), 2019, [Online]. Available: engrxiv.org/jwzrq.
    35. 35)
      • 5. Eskom Transmission, Thava Govender: ‘The Eskom transmission development plan 2018 to 2027 (tdp 2017)’. Public forum, 2017. Available at http://www.eskom.co.za/Whatweredoing/TransmissionDevelopmentPlan/Documents/2018-2027TDP_PubForumPresentationOct2017rev3.pdf.
    36. 36)
      • 43. NERC Resources subcommittee: ‘Balancing and frequency control’, A technical document, 26 January 2011, p. 5. Available at https://www.nerc.com/docs/oc/rs/NERC Balancing and Frequency Control 040520111.pdf.
    37. 37)
      • 6. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 13871401.
    38. 38)
      • 2. EUROPEAN COMMISSION: ‘Renewable Energy Progress Report’. Report from the commission to the council, the European economic and social committee, and the committee of the regions, Vol. Brussels 1.2.2017 No. 57 final, 2017, pp. 118.
    39. 39)
      • 22. Ma, H.T., Chowdhury, B.H.: ‘Working towards frequency regulation with wind plants: combined control approaches’, IET Renew. Power Gener., 2010, 4, (4), pp. 308316.
    40. 40)
      • 29. Pagnier, L., Jacquod, P.: ‘Disturbance propagation, inertia location and slow modes in large-scale high voltage power grids’, arXiv, 2018.
    41. 41)
      • 10. Kundur, P.: ‘Power system system stability and control’ (McGraw-Hill, New York, NY, USA, 1994, 1st edn.).
    42. 42)
      • 37. Groß, D., Bolognani, S., Poolla, B.K., et al: ‘Increasing the resilience of low-inertia power systems by virtual inertia and damping’. Bulk Power Systems Dynamics and Control Symp. (IREP), Zurich, Switzerland, 2017. Available at http://people.ee.ethz.ch/floriand/docs/Articles/Gross_IREP_2017.pdf.
    43. 43)
      • 20. Tamrakar, U., Shrestha, D., Maharjan, M., et al: ‘Virtual inertia: current trends and future directions’, Appl. Sci., 2017, 7, (7), p. 654.
    44. 44)
      • 41. Thorp, J.S., Seyler, C.E., Phadke, A.G.: ‘Electromechanical wave propagation in large electric power systems’, IEEE Trans. Circuits Syst., 1998, 45, pp. 614622.
    45. 45)
      • 17. Australian Energy Market Operator (AEMO): ‘Black System South Australia 28 September 2016’. Final report, 2017.
    46. 46)
      • 46. Hellmann, F., Schultz, P., Jaros, P., et al: ‘Network-induced multistability through lossy coupling and exotic solitary states’, Nat. Commun., 2020, 11. Available at https://doi.org/10.1038/s41467-020-14417-7, Article number: 592.
    47. 47)
      • 1. Tielens, P., Van Hertem, D.: ‘Grid inertia and frequency control in power systems with high penetration of renewables’. Young Researchers Symp. in Electrical Power Engineering, edition:6, Delft, The Netherlands, 16–17 April 2012.
    48. 48)
      • 45. Overbye, T.J., Glover, J.D, Sarma, M.S.: ‘Power system analysis & design’ (Cengage Learning, Australia, 2012, 5th edn.), pp. 579593.
    49. 49)
      • 24. Wang, X., Yue, M., Muljadi, E.: ‘PV generation enhancement with a virtual inertia emulator to provide inertial response to the grid’. 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 2014.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2020.0042
Loading

Related content

content/journals/10.1049/iet-rpg.2020.0042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address