Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Leakage current alleviation in solar energy conversion system enabling power quality improvement

This work presents a generalised integrator-based control algorithm for power quality (PQ) amelioration of the grid in the presence of non-linear load enabling leakage current suppression feature. Owing to the presence of stray capacitance between solar photovoltaic (PV) array and the ground, the variation in common-mode voltage across stray capacitance leads to potential safety issues, electromagnetic interference, and distortion into the injected grid currents. Furthermore, the PQ of the grid is highly deteriorated under the existence of non-linear loads. To solve the aforementioned issues, the harmonic compensation controller is presented herein to ensure the unity power factor operation, harmonic compensation, leakage current suppression using the grid-connected solar PV array system. Simulated results show the effectiveness of the control strategy under various operating scenario. In contrast to the state-of-the-art techniques, the grid currents are attained sinusoidal and balanced even in the presence of unbalanced non-linear load. Furthermore, the leakage current is suppressed within 300 mA as per the VDE-00126-01 standard. The comparative performance explicitly validates the effectiveness of the presented harmonic compensating strategy over the conventional schemes. Test results manifest the response of the solar PV array system for various operating conditions and follows the revised IEEE-519–2014 sand VDE-00126-01 standards.

References

    1. 1)
      • 30. Merai, M., Naouar, M., Slama-Belkhodja, I.: ‘An improved DC-link voltage control strategy for grid connected converters’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 35753582.
    2. 2)
      • 22. Noroozi, N., Yaghoubi, M., Zolghadri, M.: ‘A modulation method for leakage current reduction in a three-phase grid-tie quasi-Z-source inverter’, IEEE Trans. Power Electron., 2019, 34, (6), pp. 54395450.
    3. 3)
      • 21. Martinez-Garcia, J., Martinez-Rodriguez, P., Escobar, G., et al: ‘Effects of modulation techniques on leakage ground currents in a grid-tied transformerless HB-NPC inverter’, IET Renew. Power Gener., 2019, 13, (8), pp. 12501260.
    4. 4)
      • 39. Tripathi, A., Sen, P.: ‘Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters’, IEEE Trans. Ind. Electron., 1992, 39, (1), pp. 6373.
    5. 5)
      • 14. Guo, X., Xu, D., Wu, B.: ‘Three-phase seven-switch inverter with common mode voltage reduction for transformerless photovoltaic system’. Proc. IEEE IECON 2014–40th Annual Conf. of the IEEE Industrial Electronics Society, Dallas, USA., 2014, pp. 22792284.
    6. 6)
      • 2. Guo, X., Wang, N., Wang, B., et al: ‘Evaluation of three-phase transformerless DC-bypass PV inverters for leakage current reduction’, IEEE Trans. Power Electron., 2020, 35, (6), pp. 59185927.
    7. 7)
      • 5. Eslami, A., Ghanbari, T.: ‘New mathematical model from system standpoint to analyse and mitigate PV leakage current of large PV strings/arrays’, IET Gener. Transm. Distrib., 2019, 13, (4), pp. 543552.
    8. 8)
      • 4. Islam, M., Hasanuzzaman, M., Rahim, N., ‘Effect of different factors on the leakage current behavior of silicon photovoltaic modules at high voltage stress’, IEEE J. Photovoltaics, 2018, 8, (5), pp. 12591265.
    9. 9)
      • 20. Concari, L., Barater, D., Buticchi, G., et al: ‘H8 inverter for common-mode voltage reduction in electric drives’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 40104019.
    10. 10)
      • 9. Barater, D., Lorenzani, E., Concari, C., et al: ‘Recent advances in single-phase transformerless photovoltaic inverters’, IET Renew. Power Gener., 2016, 10, (2), pp. 260273.
    11. 11)
      • 15. Guo, X.: ‘Three-phase CH7 inverter with a new space vector modulation to reduce leakage current for transformerless photovoltaic systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (2), pp. 708712.
    12. 12)
      • 34. Turner, R., Walton, S., Duke, R.: ‘Stability and bandwidth implications of digitally controlled grid-connected parallel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 36853694.
    13. 13)
      • 28. Roman, E., Alonso, R., Ibanez, P., et al: ‘Intelligent PV module for grid-connected PV systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10661073.
    14. 14)
      • 13. National solar mission implementation of state-level solar rooftop photovoltaic programs in India, Government of India, Ministry of New and Renewable Energy (MNRE), June 2016.
    15. 15)
      • 25. Chen, D., Zhang, J., Qian, Z.: ‘Research on fast transient and 6n ± 1 harmonics suppressing repetitive control scheme for three-phase grid-connected inverters’, IET Power Electron., 2013, 6, (3), pp. 601610.
    16. 16)
      • 18. Guo, X., Jia, X.: ‘Hardware-based cascaded topology and modulation strategy with leakage current reduction for transformerless PV systems’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 78237832.
    17. 17)
      • 26. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Hybrid pulsewidth modulated single-phase quasi-Z-source grid-tie photovoltaic power system’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 621632.
    18. 18)
      • 32. Karimi-Ghartemani, M., Khajehoddin, S., Jain, P., et al: ‘A systematic approach to DC-bus control design in single-phase grid-connected renewable converters’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31583166.
    19. 19)
      • 38. Song, S., Choi, J., Sul, S.: ‘Current measurements in digitally controlled AC drives’, IEEE Ind. Appl. Mag., 2000, 6, (4), pp. 5162.
    20. 20)
      • 27. Hui, N., Wang, D., Li, Y.: ‘A novel hybrid filter-based PLL to eliminate effect of input harmonics and DC offset’, IEEE Access, 2018, 6, pp. 1976219773.
    21. 21)
      • 36. Malesani, L., Tenti, P., Gaio, E., et al: ‘Improved current control technique of VSI PWM inverters with constant modulation frequency and extended voltage range’, IEEE Trans. Ind. Appl., 1991, 27, (2), pp. 365369.
    22. 22)
      • 40. Holtz, J.: ‘Pulsewidth modulation-a survey’, IEEE Trans. Ind. Electron., 1992, 39, (5), pp. 410420.
    23. 23)
      • 6. Xiao, H., Xie, S.: ‘Leakage current analytical model and application in single-phase transformerless photovoltaic grid-connected inverter’, IEEE Trans. Electromagn. Compat., 2010, 52, (4), pp. 902913.
    24. 24)
      • 7. Siwakoti, Y.P., Blaabjerg, F.: ‘Common-ground-type transformerless inverters for single-phase solar photovoltaic systems’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 21002111.
    25. 25)
      • 17. Guo, X., Zhang, X., Guan, H., et al: ‘Three-phase ZVR topology and modulation strategy for transformerless PV system’, IEEE Trans. Power Electron., 2019, 34, (2), pp. 10171021.
    26. 26)
      • 19. Harmonic Solution Guide, MTE Corporation. Available at https://www.mtecorp.com/blog/2018/04/09/-effects-of-harmonics-in-power-system/, Accessed: December 2019.
    27. 27)
      • 12. Sonti, V., Jain, S., Agarwal, V., et al: ‘Terminal voltage analysis for the transformerless PV inverter topologies in a single-phase system’, IET Renew. Power Gener., 2019, 13, (15), pp. 27232739.
    28. 28)
      • 8. Guo, X.: ‘A novel CH5 inverter for single-phase transformerless photovoltaic system applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (10), pp. 11971201.
    29. 29)
      • 31. Taghizadeh, S., Hossain, M., Lu, J., et al: ‘An enhanced DC-bus voltage-control loop for single-phase grid-connected DC/AC converters’, IEEE Trans. Power Electron., 2019, 34, (6), pp. 58195829.
    30. 30)
      • 29. Zhang, H., Zhou, H., Ren, J., et al: ‘Three-phase grid-connected photovoltaic system with SVPWM current controller’. Proc. IEEE 6th Int. Power Electronics and Motion Control Conf., Wuhan, 2009, pp. 21612164.
    31. 31)
      • 24. Pandove, G., Singh, M.: ‘Robust repetitive control design for a three-phase four wire shunt active power filter’, IEEE Trans. Ind. Inf., 2019, 15, (5), pp. 28102818.
    32. 32)
      • 10. Patrao, I., Garcerá, G., Figueres, E., et al: ‘Grid-tie inverter topology with maximum power extraction from two photovoltaic arrays’, IET Renew. Power Gener., 2014, 8, (6), pp. 638648.
    33. 33)
      • 35. Gabe, I., Massing, J., Montagner, V., et al: ‘Stability analysis of grid-connected voltage source inverters with LCL-filters using partial state feedback’. Proc. IEEE 2007 European Conf. on Power Electronics and Applications, Aalborg, 2007, pp. 110.
    34. 34)
      • 33. Bonaldo, J., Morales Paredes, H., Pomilio, J.: ‘Control of single-phase power converters connected to low-voltage distorted power systems with variable compensation objectives’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 20392052.
    35. 35)
      • 1. Kerekes, T., Teodorescu, R., Rodríguez, P., et al: ‘A new high-efficiency single-phase transformerless PV inverter topology’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 184191.
    36. 36)
      • 16. Xu, J., Han, J., Wang, Y., et al: ‘A novel scalar PWM method to reduce leakage current in three-phase two-level transformerless grid-connected VSIs’, IEEE Trans. Ind. Electron., 2019, 67, (5), pp. 37883797.
    37. 37)
      • 23. Kumar, A., Indragandhi, V., Kumar, S.: ‘Design and implementation of single-phase inverter without transformer for PV applications’, IET Renew. Power Gener., 2018, 12, (5), pp. 547554.
    38. 38)
      • 41. Kazmierkowski, M., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703.
    39. 39)
      • 42. Singh, B., Chandra, A., Al-Haddad, K.: ‘Power quality: problems and mitigation techniques’ (Wiley Publication, Chichester, UK, 2015).
    40. 40)
      • 11. Freddy, T., Rahim, N., Hew, W., et al: ‘Comparison and analysis of single-phase transformerless grid-connected PV inverters’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 53585369.
    41. 41)
      • 3. Lorenzani, E., Migliazza, G., Immovilli, F., et al: ‘Internal current return path for ground leakage current mitigation in current source inverters’, IEEE Access, 2019, 7, pp. 9654096548.
    42. 42)
      • 37. Bose, B.: ‘An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system’, IEEE Trans. Ind. Electron., 1990, 37, (5), pp. 402408.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1492
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address