access icon free How essential non-linear stiffness affects the adaptation of flow energy converter based on fully-passive oscillating-foil?

An essential non-linear flow-energy converter based on fully-passive oscillating-foil is proposed to improve the adaptation under varied flow conditions. The converter consists of a C-shape foil elastically supported by two springs, an arm that transfers the plunging motion into swing motion and two dampers to absorb mechanical energy. For the purpose of improving performance within a broader range of exciting frequency under varied flow speeds the authors employ two essential non-linear springs in the converter. The adaptation and performance of an essential non-linear converter were assessed numerically. The effects of non-linear stiffness coefficients, varied damping factors, and speed ratios are investigated in detail. The results indicated that the effective range of speed ratio (range of synchronisation) is broadened from (0.4, 2.0) to (0.2, 4.0) with appropriately tuned non-linear stiffness, so the adaptation of the flow energy converter based on oscillating-foil is improved, rendering it more suitable for varied flow conditions and real applications. Besides, performance gains at the design point can be realised as compared with the linear converter. It is found that two fundamental mechanisms are advantageous to enhance the adaptation and performance of the converter: the increased effective stiffness with oscillating amplitude and the non-sinusoidal swing motion.

Inspec keywords: fluid oscillations; chemical energy conversion; shock absorbers; springs (mechanical); vibrations; damping; foils; elasticity

Other keywords: fully-passive oscillating-foil; flow speed; damping factors; C-shape foil; linear converter; nonlinear springs; nonsinusoidal swing motion; mechanical energy; flow energy converter; plunging motion; flow conditions; speed ratio; swing motion; nonlinear converter; nonlinear stiffness coefficients; nonlinear flow-energy converter

Subjects: Mechanical components; Other direct energy conversion; Vibrations and shock waves (mechanical engineering); Chemical energy conversion; Applied fluid mechanics; Elasticity (mechanical engineering); General fluid dynamics theory, simulation and other computational methods; Fluid mechanics and aerodynamics (mechanical engineering)

References

    1. 1)
      • 6. Shimizu, E., Isogai, K., Obayashi, S.: ‘Multiobjective design study of a flapping wing power generator’, J. Fluids Eng., 2008, 130, (2), p. 021104.
    2. 2)
      • 11. Wang, Z., Du, L., Zhao, J.S., et al: ‘Structural response and energy extraction of a fully passive flapping foil’, J. Fluid Struct., 2017, 72, (Suppl. C), pp. 96113.
    3. 3)
      • 13. Boudreau, M., Dumas, G., Rahimpour, M., et al: ‘Experimental investigation of the energy extraction by a fully-passive flapping-foil hydrokinetic turbine prototype’, J. Fluid Struct., 2018, 82, pp. 446472.
    4. 4)
      • 37. Lu, K., Xie, Y.H., Zhang, D.: ‘Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion’, J. Fluid Struct., 2013, 36, pp. 184194.
    5. 5)
      • 15. Bernitsas, M.M., Ben-Simon, Y., Raghavan, K., et al: ‘The VIVACE converter: model tests at high damping and Reynolds number around 105’, J. Offshore Mech. Arct. Eng., 2009, 131, (1), p. 011102.
    6. 6)
      • 31. Jiang, W., Zhang, D., Xie, Y.H.: ‘Numerical investigation into the effects of arm motion and camber on a self-induced oscillating hydrofoil’, Energy, 2016, 115, Part 1, pp. 10101021.
    7. 7)
      • 18. Totpal, A.D., Siala, F.F., Liburdy, J.A.: ‘Energy harvesting of an oscillating foil at low reduced frequencies with rigid and passively deforming leading edge’, J. Fluid Struct., 2018, 82, pp. 329342.
    8. 8)
      • 4. Young, J., Lai, J.C., Platzer, M.F.: ‘A review of progress and challenges in flapping foil power generation’, Prog. Aerosp. Sci., 2014, 67, pp. 228.
    9. 9)
      • 23. Van Blarigan, L., Danzl, P., Moehlis, J.: ‘A broadband vibrational energy harvester’, Appl. Phys. Lett., 2012, 100, (25), p. 253904.
    10. 10)
      • 17. Lee, J., Bernitsas, M.: ‘High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter’, Ocean Eng., 2011, 38, (16), pp. 16971712.
    11. 11)
      • 2. Wu, T.Y., Chwang, A.T.: ‘Extraction of flow energy by fish and birds in a wavy stream’ in Wu, T.Y.T., Brokaw, C.J., Brennen, C. (Eds.): ‘Swimming and flying in nature’ (Springer, Boston, 1975), pp. 687702.
    12. 12)
      • 36. Bos, F.M., Lentink, D., Van Oudheusden, B., et al: ‘Influence of wing kinematics on aerodynamic performance in hovering insect flight’, J. Fluid Mech., 2008, 594, pp. 341368.
    13. 13)
      • 5. Xiao, Q., Zhu, Q.: ‘A review on flow energy harvesters based on flapping foils’, J. Fluid Struct., 2014, 46, pp. 174191.
    14. 14)
      • 22. Arrieta, A.F., Hagedorn, P., Erturk, A., et al: ‘A piezoelectric bistable plate for nonlinear broadband energy harvesting’, Appl. Phys. Lett., 2010, 97, (10), p. 104102.
    15. 15)
      • 27. Quinn, D.D., Triplett, A., Bergman, L.A., et al: ‘Comparing linear and essentially nonlinear vibration-based energy harvesting’, J. Vib. Acoust., 2011, 133, (1), p. 011001.
    16. 16)
      • 16. Narendran, K., Murali, K., Sundar, V.: ‘Investigations into efficiency of vortex induced vibration hydro-kinetic energy device’, Energy, 2016, 109, pp. 224235.
    17. 17)
      • 35. Lee, T., Gerontakos, P.: ‘Investigation of flow over an oscillating airfoil’, J. Fluid Mech., 2004, 512, pp. 313341.
    18. 18)
      • 26. Jiang, W., Wang, Y.L., Zhang, D., et al: ‘Numerical investigation into the effect of nonlinear spring on the adaptation of an oscillating foil for energy extraction’, Renew. Energy, 2018, 117, pp. 1221.
    19. 19)
      • 10. Peng, Z.L., Zhu, Q.: ‘Energy harvesting through flow-induced oscillations of a foil’, Phys. Fluids, 2009, 21, (12), p. 123602.
    20. 20)
      • 30. Jiang, W., Zhang, D., Xie, Y.H.: ‘Numerical investigation into energy extraction from self-induced oscillations of an elliptical plate’, J. Fluid Struct., 2017, 69, pp. 115.
    21. 21)
      • 33. Kinsey, T., Dumas, G.: ‘Parametric study of an oscillating airfoil in a power-extraction regime’, AIAA J., 2008, 46, (6), pp. 13181330.
    22. 22)
      • 29. Quinn, D.D., Vakakis, A.F., Bergman, L.A.: ‘Vibration-based energy harvesting with essential nonlinearities’. Conf. Vibration-Based Energy Harvesting with Essential Nonlinearities, Las Vegas, USA, 2011, p. 35457.
    23. 23)
      • 12. Veilleux, J.-C., Dumas, G.: ‘Numerical optimization of a fully-passive flapping-airfoil turbine’, J. Fluid Struct., 2017, 70, (Suppl. C), pp. 102130.
    24. 24)
      • 14. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., et al: ‘VIVACE (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow’, J. Offshore Mech. Arct. Eng., 2008, 130, (4), p. 041101.
    25. 25)
      • 9. Young, J., Ashraf, M., Lai, J., et al: ‘Numerical simulation of flow-driven flapping-wing turbines for wind and water power generation’. Proc. 17th Australasian Fluid Mechanics Conf., Auckland, New Zealand, 2010.
    26. 26)
      • 25. Mackowski, A., Williamson, C.: ‘An experimental investigation of vortex-induced vibration with nonlinear restoring forces’, Phys. Fluids, 2013, 25, (8), p. 087101.
    27. 27)
      • 21. Cottone, F., Vocca, H., Gammaitoni, L.: ‘Nonlinear energy harvesting’, Phys. Rev. Lett., 2009, 102, (8), p. 080601.
    28. 28)
      • 34. Wernert, P., Geissler, W., Raffel, M., et al: ‘Experimental and numerical investigations of dynamic stall on a pitching airfoil’, AIAA J., 1996, 34, pp. 982989.
    29. 29)
      • 8. Wu, J., Qiu, Y., Shu, C., et al: ‘Pitching-motion-activated flapping foil near solid walls for power extraction: a numerical investigation’, Phys. Fluids, 2014, 26, (8), p. 083601.
    30. 30)
      • 3. McKinney, W., DeLaurier, J.: ‘Wingmill: an oscillating-wing windmill’, J. Energy, 1981, 5, (2), pp. 109115.
    31. 31)
      • 19. Roberson, R.E.: ‘Synthesis of a nonlinear dynamic vibration absorber’, J. Franklin Inst., 1952, 254, (3), pp. 205220.
    32. 32)
      • 7. Teng, L., Deng, J., Pan, D., et al: ‘Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil’, Renew. Energy, 2016, 85, pp. 810818.
    33. 33)
      • 20. Stanton, S.C., Mcgehee, C.C., Mann, B.P.: ‘Reversible hysteresis for broadband magnetopiezoelastic energy harvesting’, Appl. Phys. Lett., 2009, 95, (17), p. 174103.
    34. 34)
      • 32. Arnold, V.: ‘Geometrical methods in the theory of ordinary differential equations’ (Springer, New York, USA, 1988).
    35. 35)
      • 28. Kerschen, G., Lee, Y.S., Vakakis, A.F., et al: ‘Irreversible passive energy transfer in coupled oscillators with essential nonlinearity’, SIAM J. Appl. Math., 2005, 66, (2), pp. 648679.
    36. 36)
      • 24. Barton, D.A., Burrow, S.G., Clare, L.R.: ‘Energy harvesting from vibrations with a nonlinear oscillator’, J. Vib. Acoust., 2010, 132, (2), p. 021009.
    37. 37)
      • 1. Wu, T.: ‘Extraction of flow energy by a wing oscillating in waves’, J. Ship Res., 1971, 14, (1), pp. 6678.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1427
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1427
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading