Your browser does not support JavaScript!

access icon free Performance optimisation of the grid-connected flyback inverter under improved hybrid conduction mode

In the unfolding-type interleaved two-switch flyback inverter (ILTFI) operating in discontinuous conduction mode (DCM), the hybrid control strategy combining the one-phase DCM and the two-phase DCM has a significant impact on improving the efficiency under all load conditions. In the situation where the marginal power of this control strategy is increased, the converter may enter CCM. Consequently, the converter cannot track the reference current and the output current quality is notably decreased. To tackle this issue, a novel hybrid control method is proposed which varies the switching frequency based on the output power. The proposed approach is immune to the loss analysis and power losses of the components. Hence, it is independent of components selection and their characteristics. In this case, the smooth transition between the one-phase and the two-phase operation modes is guaranteed without affecting the output power quality and the stability of the converter in DCM. The control complexity of the proposed scheme is low and the converter can be easily controlled in DCM. The performance of the flyback microinverter with the proposed hybrid control scheme is verified by the simulation and the experimental results together with the loss analysis.


    1. 1)
      • 5. Nanakos, A.C., Tatakis, E.C., Nick Papanikolaou, P.: ‘A weighted-efficiency-oriented design methodology of flyback inverter for AC photovoltaic modules’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 32213233.
    2. 2)
      • 3. Wills, R.H., Krauthamer, S., Bulawka, A., et al: ‘The AC photovoltaic module concept’. Proc. 32nd Intersociety Energy Conversion Engineering Conf., 1997. IECEC–97, Honolulu, HI, USA, 1997, vol. 3, pp. 15621563.
    3. 3)
      • 12. Mohammadi, S., Izadfar, H.R., Eskandarian, N.: ‘A new adaptive clamp for improving weighted efficiency in grid-tied photovoltaic interleaved two-switch flyback micro-inverter’, Int. Trans. Electr. Energ. Syst., 2019, 29, (8), p. e12033.
    4. 4)
      • 8. Keshani, M., Adib, E., Farzanehfard, H.: ‘Micro-inverter based on single-ended primary-inductance converter topology with an active clamp power decoupling’, IET Power Electron., 2018, 11, (1), pp. 7381.
    5. 5)
      • 29. Fu, J., Zhang, Z., Liu, Y., et al: ‘MOSFET switching loss model and optimal design of a current source driver considering the current diversion problem’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 9981012.
    6. 6)
      • 6. Liang, Z., Guo, R., Li, J., et al: ‘A high-efficiency PV module integrated DC/DC converter for PV energy harvest in FREEDM systems’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 897909.
    7. 7)
      • 25. Kyritsis, A.C., Tatakis, E.C., Papanikolaou, N.P..: ‘Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 281293.
    8. 8)
      • 33. Alibakhshikenari, M., Vidree, B.S., See, C.H., et al: ‘Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures’, IET Microw. Antennas Propag., 2018, 12, (14), pp. 22412247.
    9. 9)
      • 16. Kim, S., Lee, S., Lee, J.S., et al: ‘Dual-mode flyback inverters in grid-connected photovoltaic systems’, IET Renew. Power Gener., 2016, 10, (9), pp. 14021412.
    10. 10)
      • 14. Edwin, F.F., Xiao, W., Khadkikar, V.: ‘Dynamic modeling and control of interleaved flyback module-integrated converter for PV power applications’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 13771388.
    11. 11)
      • 18. Kim, Y.H., Ji, Y.H., Kim, J.G., et al: ‘A new control strategy for improving weighted efficiency in photovoltaic ac module-type interleaved flyback inverters’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26882699.
    12. 12)
      • 17. Zhang, Z., He, X.-F., Liu, Y.-F.: ‘An optimal control method for photovoltaic grid-tied interleaved flyback micro-inverters to achieve high efficiency in wide load range’, IEEE Trans. Power Electron, 2013, 28, pp. 50745087.
    13. 13)
      • 11. Mohammadi, S., Abootorabi Zarchi, H., Amiri, M.: ‘Interleaved two-switch flyback microinverter for grid-tied photovoltaic applications’. Sixth Power Electronics, Drive Systems & Technologies Conf. (PEDSTC2015), Tehran, 2015, pp. 5964.
    14. 14)
      • 21. Nanakos, A.C., Christidis, G.C., Tatakis, E.C.: ‘Weighted efficiency optimization of flyback microinverter under improved boundary conduction mode (i-BCM)’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 55485564.
    15. 15)
      • 1. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306.
    16. 16)
      • 13. Li, Y., Oruganti, R.: ‘A low cost flyback CCM inverter for ac module application’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12951303.
    17. 17)
      • 15. Lee, S., Cha, W., Kwon, J., et al: ‘Control strategy of flyback microinverter with hybrid mode for PV AC modules’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 9951002.
    18. 18)
      • 10. Mohammadi, S., Zarchi, H.A.: ‘An interleaved high-power two-switch flyback inverter with a fast and robust maximum power point tracker’. 2016 Seventh Power Electronics and Drive Systems Technologies Conf. (PEDSTC), Tehran, 2016, pp. 320325.
    19. 19)
      • 23. Gao, M., Chen, M., Zhang, C., et al: ‘Analysis and implementation of an improved flyback inverter for photovoltaic ac module applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34283444.
    20. 20)
      • 26. Zhang, Z., Li, F., Liu, Y.: ‘A high-frequency dual-channel isolated resonant gate driver with low gate drive loss for ZVS full-bridge converters’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 30773090.
    21. 21)
      • 27. Zhang, Z., Eberle, W., Lin, P., et al: ‘A 1-MHz high-efficiency 12-v buck voltage regulator with a new current-source gate driver’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28172827.
    22. 22)
      • 7. Fei, W., Feng, X., Zhang, L., et al: ‘Impedance-based analysis of grid harmonic interactions between aggregated flyback micro-inverters and the grid’, IET Power Electron., 2018, 11, (3), pp. 453459.
    23. 23)
      • 20. Zengin, S., Deveci, F., Boztepe, M.: ‘Volt-second-based control method for discontinuous conduction mode flyback micro-inverters to improve total harmonic distortion’, IET Power Electron., 2013, 6, (8), pp. 16001607.
    24. 24)
      • 2. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘Power inverter topologies for photovoltaic modules – a review’. Proc. 37th IAS Annual Industry Application Conf., Pittsburgh, PA, USA, 2002, vol. 2, pp. 782788.
    25. 25)
      • 28. Zhang, Z., Eberle, W., Yang, Z., et al: ‘Optimal design of resonant gate driver for buck converter based on a new analytical loss model’, IEEE Trans. Power Electron., 2008, 23, (2), pp. 653666.
    26. 26)
      • 31. Rezaei, M.A., Lee, K., Huang, A.Q.: ‘A high-efficiency flyback micro-inverter with a new adaptive snubber for photovoltaic applications’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 318327.
    27. 27)
      • 9. Karbakhsh, F., Amiri, M., Abootorabi Zarchi, H.: ‘Two-switch flyback inverter employing a current sensorless MPPT and scalar control for low cost solar powered pumps’, IET Renew. Power Gener., 2017, 11, (5), pp. 669677.
    28. 28)
      • 22. Levron, Y., Erickson, R.W.: ‘High weighted efficiency in single-phase solar inverters by a variable-frequency peak current controller’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 248257.
    29. 29)
      • 19. Tamyurek, B., Kirimer, B.: ‘An interleaved high-power flyback inverter for photovoltaic applications’, IEEE Trans. Power Electron., 2015, 30, (6), pp. 32283241.
    30. 30)
      • 30. Kim, Y., Jang, J., Shin, S., et al: ‘Weighted-efficiency enhancement control for a photovoltaic AC module interleaved flyback inverter using a synchronous rectifier’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 64816493.
    31. 31)
      • 4. Sukesh, N., Pahlevaninezhad, M., Jain, P.K.: ‘Analysis and implementation of a single-stage flyback PV microinverter with soft switching’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 18191833.
    32. 32)
      • 32. Alibakhshikenari, M., Virdee, B.S., Ali, A., et al: ‘Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems’, IET Microw. Antennas Propag., 2018, 12, (7), pp. 10801086.
    33. 33)
      • 24. Christidis, G.C., Nanakos, A.C., Tatakis, E.C.: ‘Hybrid discontinuous/boundary conduction mode of flyback microinverter for AC–PV modules’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 41954205.

Related content

This is a required field
Please enter a valid email address