Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi agent-based strategy protecting the loop-based micro-grid via intelligent electronic device-assisted relays

Penetrating distributed generation units into the radial distribution networks has been making the protection schemes become ever so complex. The microgrid modes of operation have also increased this complexity. Moreover, the ‘loop-based microgrid’ concept has made it extremely difficult or even impossible to utilise the available radial protection schemes. Although redesigning a new protection structure solves the problem, there should be an affordable way for surviving today's protection systems; accordingly, this study equips the ordinary overcurrent relays with intelligent electronic devices to act as an agent within a multi-agent framework. Given these devices are equipped with an efficient communication infrastructure for industrial applications, named IEC 61850 standard, the proposed approach uses a communication-based strategy, named token, to securely protect the system without any conflict in relays’ operation. The simulation results prove the effectiveness of the proposed method for any DG's penetration, network configuration and fault location. This kind of flexible strategies can affordably differ the expensive protection system replacement in the future revolutionary network upgrades.

References

    1. 1)
      • 8. Chen, L., Zhang, X., Qin, Y., et al: ‘Application and design of a resistive-type superconducting fault current limiter for efficient protection of a DC microgrid’, IEEE Trans. Appl. Supercond., 2019, 29, (2), pp. 17.
    2. 2)
      • 2. Plecas, M., Xu, H., Kockar, I.: ‘Integration of energy storage to improve utilisation of distribution networks with active network management schemes’, CIRED – Open Access Proc. J., 2017, 2017, (1), pp. 18451848.
    3. 3)
      • 5. Kang, X., Nuworklo, C.E.K., Tekpeti, B.S., et al: ‘Protection of micro-grid systems: a comprehensive survey’, J. Eng., 2017, 2017, (13), pp. 15151518.
    4. 4)
      • 34. Liu, X., Shahidehpour, M., Li, Z., et al: ‘Protection scheme for loop-based microgrids’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 13401349.
    5. 5)
      • 40. Strasser, T., Andrén, F., Kathan, J., et al: ‘A review of architectures and concepts for intelligence in future electric energy systems’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 24242438.
    6. 6)
      • 1. Basso, T.S., DeBlasio, R.: ‘IEEE 1547 series of standards: interconnection issues’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11591162.
    7. 7)
      • 6. Rajaei, N., Ahmed, M.H., Salama, M.M.A., et al: ‘Fault current management using inverter-based distributed generators in smart grids’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 21832193.
    8. 8)
      • 4. Beheshtaein, S., Cuzner, R., Savaghebi, M., et al: ‘Review on microgrids protection’, IET Gener. Transm. Distrib., 2019, 13, (6), pp. 743759.
    9. 9)
      • 12. Haron, A.R., Mohamed, A., Shareef, H.: ‘Coordination of overcurrent, directional and differential relays for the protection of microgrid system’, Procedia Technol., 2013, 11, pp. 366373.
    10. 10)
      • 22. Oudalav, A., Fidigatti, A.: ‘Adaptive network protection in microgrids’, Int. J. Distrib. Energy Res., 2009, 5, pp. 201225.
    11. 11)
      • 10. Lee, B.W., Sim, J., Park, K.B., et al: ‘Practical application issues of superconducting fault current limiters for electric power systems’, IEEE Trans. Appl. Supercond., 2008, 18, (2), pp. 620623.
    12. 12)
      • 32. Liu, Z., Su, C., Hoidalen, H.K., et al: ‘A multiagent system-based protection and control scheme for distribution system with distributed-generation integration’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 536545.
    13. 13)
      • 37. Liu, Z., Chen, Z., Sun, H., et al: ‘Multiagent system-based wide-area protection and control scheme against cascading events’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 16511662.
    14. 14)
      • 33. Lin, H., Guerrero, J.M., Jia, C., et al: ‘Adaptive overcurrent protection for microgrids in extensive distribution systems’. Proc. of the IEEE/IECON, Florence, Italy, October 2016, pp. 40424047.
    15. 15)
      • 29. Fani, B., Bisheh, H.: ‘Local penetration-free control approach against numerous changes in PV generation level in MAS-based protection schemes’, IET Renew. Power Gener., 2019, 13, (7), pp. 11971204.
    16. 16)
      • 19. Norshahrani, M., Mokhlis, H., Bakar, A.H.A., et al: ‘Progress on protection strategies to mitigate the impact of renewable distributed generation on distribution systems’, Energies, 2017, 10, (11), pp. 130.
    17. 17)
      • 36. Khan, M.W., Wang, J. ‘The research on multi-agent system for microgrid control and optimization’, Renew. Sustain. Energy Rev., 2017, 80, pp. 13991411.
    18. 18)
      • 38. Ananda, S.A., Gu, J.: ‘Multi-agent based protection on highly dominated distributed energy resources’, Energy Power Eng., 2013, 5, (4B), pp. 927931.
    19. 19)
      • 23. Ustun, T.S., Ozansoy, C., Zayegh, A.: ‘A microgrid protection system with central protection unit and extensive communication’. Proc. of the IEEE/EEEIC, Rome, Italy, 2011, pp. 14.
    20. 20)
      • 16. Lin, H., Liu, C., Guerrero, J.M., et al: ‘Distance protection for microgrids in distribution system’. Proc. of the IEEE/IECON, Yokohama, Japan, November 2015, pp. 731736.
    21. 21)
      • 14. Hooshyar, A., Iravani, R.: ‘Microgrid protection’, Proc. IEEE, 2017, 105, (7), pp. 13321353.
    22. 22)
      • 17. Voima, S., Kauhaniemi, K.: ‘Using distance protection in smart grid environment’. Proc. of the IEEE/PES, Istanbul, Turkey, 2015, pp. 16.
    23. 23)
      • 15. Lin, H., Guerrero, J.M., Vasquez, J.C., et al: ‘Adaptive distance protection for microgrids’. Proc. of the IEEE/IECON, Yokohama, Japan, November 2015, pp. 725730.
    24. 24)
      • 18. Jamali, S., Borhani-Bahabadi, H.: ‘Protection method for radial distribution systems with DG using local voltage measurements’, IEEE Trans. Power Deliv., 2019, 34, (2), pp. 651660.
    25. 25)
      • 39. Kriger, C., Behardien, S., Retonda-Modiya, J.C.: ‘A detailed analysis of the GOOSE message structure in an IEC 61850 standard-based substation automation system’, Int. J. Comput. Commun. Control, 2013, 8, (5), pp. 708721.
    26. 26)
      • 13. Sortomme, E., Ren, J., Venkata, S.S.: ‘A differential zone protection scheme for microgrids’. Proc. of the IEEE/PESMG, Vancouver, BC, Canada, July 2013, pp. 15.
    27. 27)
      • 41. Rahman, M.S., Pota, H.R., Hossain, M.J.: ‘Cyber vulnerabilities on agent-based smart grid protection system’. Proc. of the IEEE/PESGM, National Harbor, MD, USA, July 2014, pp. 15.
    28. 28)
      • 35. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    29. 29)
      • 21. Zamani, A.: ‘Microgrid protection systems’. Technical Report PES-TR71, 2019.
    30. 30)
      • 25. Han, Y., Hu, X., Zhang, D.: ‘Study of adaptive fault current algorithm for microgrid dominated by inverter based distributed generators’. Proc. of the IEEE/PEDG, Hefei, China, June 2010, pp. 852854.
    31. 31)
      • 3. IEEE Standard Association: ‘IEEE std. 1547-2018. Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces’, IEEE SA, 2018.
    32. 32)
      • 30. Fani, B., Abbaspour, E., Karami-Horestani, A.: ‘A fault-clearing algorithm supporting the MAS-based protection schemes’, Int. J. Electr. Power Energy Syst., 2018, 103, pp. 257266.
    33. 33)
      • 31. Cintuglu, M.H., Ma, T., Mohammed, O.A. ‘Protection of autonomous microgrids using agent-based distributed communication’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 351360.
    34. 34)
      • 9. Wheeler, K., Elsamahy, M., Faried, S.: ‘Use of superconducting fault current limiters for mitigation of distributed generation influences in radial distribution network fuse-recloser protection systems’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16051612.
    35. 35)
      • 27. Zidan, A., El-Saadany, E.F.: ‘A cooperative multiagent framework for self-healing mechanisms in distribution systems’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 15251539.
    36. 36)
      • 24. Brahma, S.M., Girgis, A.A.: ‘Development of adaptive protection scheme for distributed systems with high penetration of distributed generation’, IEEE Trans. Power Deliv., 2004, 19, (1), pp. 5663.
    37. 37)
      • 7. Brearley, B.J., Prabu, R.R.: ‘A review on issues and approaches for microgrid protection’, Renew. Sustain. Energy Rev., 2017, 67, pp. 988997.
    38. 38)
      • 26. Lin, H., Sun, K., Tan, Z.-H., et al: ‘Adaptive protection combined with machine learning for microgrids’, IET Gener. Transm. Distrib., 2019, 13, (6), pp. 770779.
    39. 39)
      • 28. Abbaspour, E., Fani, B., Heydarian-Forushani, E.: ‘A bi-level multiagent based protection scheme for distribution networks with distributed generation’, Int. J. Electr. Power Energy Syst., 2019, 112, pp. 209220.
    40. 40)
      • 11. Che, L., Khodayar, M.E., Shahidehpour, M.: ‘Adaptive protection system for microgrids: protection practices of a functional microgrid system’, IEEE Electrific. Mag., 2014, 2, (1), pp. 6680.
    41. 41)
      • 20. Habib, H.F., Mohammed, O.: ‘A multiagent system for simple overcurrent protection of microgrids with distributed generation’. Proc. of the IEEE/IAS, Portland, OR, USA, September 2018, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1233
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1233
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address