Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust optimisation framework for SCED problem in mixed AC-HVDC power systems with wind uncertainty

Wind power uncertainties have made the large integration of wind power generating units in the power system highly challenging. One promising solution to overcome the challenges associated with the intermittency of the renewable energy resources (RESs) is to connect areas with diverse renewable energy portfolios via high voltage direct current (HVDC) transmission lines with controllable power transfer capability. The installation of HVDC transmission lines in the power system has resulted in the evolution of conventional alternating current (AC) networks to mixed AC-HVDC power systems. In this study, to address wind power uncertainties in mixed AC-HVDC multi-area power systems, a modified robust optimisation (RO) model for the security-constrained economic dispatch (SCED) problem is proposed. The proposed RO model is used to minimise the generation cost and wind power curtailment under the worst-case scenario of actual wind power. Unlike the existing RO models, the proposed RO model considers a modified uncertainty set based on the wind power admissibility and addresses the budget of uncertainty more accurately to adjust the solution's level of conservatism. Extensive numerical studies demonstrate the economic and operational advantages of the proposed RO model for solving the SCED problem in mixed AC-HVDC power systems with high penetration of RESs.

References

    1. 1)
      • 14. Xie, L., Gu, Y., Zhu, X., et al: ‘Short-term spatio-temporal wind power forecast in robust look-ahead power system dispatch’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 511520.
    2. 2)
      • 10. Wang, J., Shahidehpour, M., Li, Z.: ‘Security-constrained unit commitment with volatile wind power generation’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13191327.
    3. 3)
      • 37. Dehghani Filabadi, M.: ‘Robust optimization for SCED in AC-HVDC power systems’. Master's thesis, University of Waterloo, 2019.
    4. 4)
      • 2. Lund, H.: ‘The implementation of renewable energy systems. Lessons learned from the Danish case’, Energy, 2010, 35, (10), pp. 40034009.
    5. 5)
      • 22. Zhang, Y., Ai, X., Wen, J., et al: ‘Robust unit commitment considering the temporal and spatial correlations of wind farms using a data-adaptive approach’. 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA., 2018, pp. 15.
    6. 6)
      • 1. ‘20% wind energy by 2030: Increasing wind energy's contribution to us electricity supply’. EERE Publication and Product Library, Washington, DC (United States), Tech. Rep., 2008.
    7. 7)
      • 16. Li, Z., Shahidehpour, M., Wu, W., et al: ‘Decentralized multiarea robust generation unit and tie-line scheduling under wind power uncertainty’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 13771388.
    8. 8)
      • 12. Bertsimas, D., Sim, M.: ‘The price of robustness’, Oper. Res., 2004, 52, (1), pp. 3553.
    9. 9)
      • 31. Lu, X., Chan, K.W., Xia, S., et al: ‘Security-constrained multi-period economic dispatch with renewable energy utilizing distributionally robust optimization’, IEEE Trans. Sustain. Energy, 2019, 10, 768779.
    10. 10)
      • 17. Zhang, Y., Ai, X., Wen, J., et al: ‘Data-adaptive robust optimization method for the economic dispatch of active distribution networks’, IEEE Trans. Smart Grid, 2018, 10, (4), pp. 37913800.
    11. 11)
      • 21. Ye, H., Li, Z.: ‘Robust security-constrained unit commitment and dispatch with recourse cost requirement’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 35273536.
    12. 12)
      • 15. Wu, W., Chen, J., Zhang, B., et al: ‘A robust wind power optimization method for look-ahead power dispatch’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 507515.
    13. 13)
      • 5. ‘Solar Eclipse 2015-Impact Analysis, Report prepared by Regional Group Continental Europe and Synchronous Area Great Britain’. Tech. Rep., 2015. Available at https://docstore.entsoe.eu/Documents/Publications/SOC/150219_Solar_Eclipse_Impact_Analysis_Final.pdf.
    14. 14)
      • 20. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
    15. 15)
      • 29. Raygani, S.V.: ‘Robust unit commitment with characterised solar pv systems’, IET Renew. Power Gener., 2018, 13, (6), pp. 867876.
    16. 16)
      • 33. Lu, X., Liu, Z., Ma, L., et al: ‘A robust optimization approach for optimal load dispatch of community energy hub’, Appl. Energy, 2020, 259, p. 114195.
    17. 17)
      • 34. Jabr, R.A.: ‘Adjustable robust OPF with renewable energy sources’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 47424751.
    18. 18)
      • 9. Ahmadi-Khatir, A., Conejo, A.J., Cherkaoui, R.: ‘Multi-area energy and reserve dispatch under wind uncertainty and equipment failures’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 43734383.
    19. 19)
      • 8. Wiget, R., Vrakopoulou, M., Andersson, G.: ‘Probabilistic security constrained optimal power flow for a mixed HVAC and HVDC grid with stochastic infeed’. Power Systems Computation Conf. (PSCC), 2014, Wroclaw, Poland, 2014, pp. 17.
    20. 20)
      • 38. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020.
    21. 21)
      • 11. Ruiz, P.A., Philbrick, C.R., Zak, E., et al: ‘Uncertainty management in the unit commitment problem’, IEEE Trans. Power Syst., 2009, 24, (2), pp. 642651.
    22. 22)
      • 35. Shahidehpour, M., Yamin, H., Li, Z.: ‘Market operations in electric power systems: forecasting, scheduling, and risk management’ (John Wiley & Sons, USA., 2003).
    23. 23)
      • 18. Jiang, R., Wang, J., Guan, Y.: ‘Robust unit commitment with wind power and pumped storage hydro’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 800810.
    24. 24)
      • 32. Soyster, A.L.: ‘Convex programming with set-inclusive constraints and applications to inexact linear programming’, Oper. Res., 1973, 21, (5), pp. 11541157.
    25. 25)
      • 40. Xiangyu, K., Linquan, B., Qinran, H., et al: ‘Day-ahead optimal scheduling method for grid-connected microgrid based on energy storage control strategy’, J. Modern Power Syst. Clean Energy, 2016, 4, (4), pp. 648658.
    26. 26)
      • 23. Zhang, Z., Chen, Y., Liu, X., et al: ‘Two-stage robust security-constrained unit commitment model considering time autocorrelation of wind/load prediction error and outage contingency probability of unit’, IEEE Access, 2019, 7, pp. 2539825408.
    27. 27)
      • 3. Kundur, P., Balu, N.J., Lauby, M.G.: ‘Power system stability and control’, vol. 7 (McGraw-Hill, New York, 1994).
    28. 28)
      • 13. Ben-Tal, A., Nemirovski, A.: ‘Robust convex optimization’, Math. Oper. Res., 1998, 23, (4), pp. 769805.
    29. 29)
      • 26. Melgar-Dominguez, O.D., Pourakbari-Kasmaei, M., Mantovani, J.R.S.: ‘Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy based DG units’, IEEE Trans. Sustain. Energy, 2018, 10, (1), pp. 158169.
    30. 30)
      • 4. ‘ENTSO-E: ‘Entso-e at a glance’, 2015.
    31. 31)
      • 7. Vrakopoulou, M., Margellos, K., Lygeros, J., et al: ‘Probabilistic guarantees for the n-1 security of systems with wind power generation’. Reliability and risk evaluation of wind integrated power systems’ (Springer, India, 2013), pp. 5973.
    32. 32)
      • 25. Li, Z., Wu, W., Shahidehpour, M., et al: ‘Adaptive robust tie-line scheduling considering wind power uncertainty for interconnected power systems’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 27012713.
    33. 33)
      • 24. Jin, S., Botterud, A., Ryan, S.M.: ‘Temporal versus stochastic granularity in thermal generation capacity planning with wind power’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 20332041.
    34. 34)
      • 6. Ding, T., Lv, J., Bo, R., et al: ‘Lift-and-project MVEE based convex hull for robust SCED with wind power integration using historical data-driven modeling approach’, Renew. Energy, 2016, 92, pp. 415427.
    35. 35)
    36. 36)
      • 19. Zhao, C., Wang, J., Watson, J.-P., et al: ‘Multi-stage robust unit commitment considering wind and demand response uncertainties’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27082717.
    37. 37)
      • 27. Tian, Y., Wang, K., Li, G., et al: ‘Affinely adjustable robust AC–DC optimal power flow considering correlation of wind power’, IET Renew. Power Gener., 2018, 12, (13), pp. 14781485.
    38. 38)
      • 39. Kundur, P., Paserba, J., Ajjarapu, V., et al: ‘Definition and classification of power system stability’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 13871401.
    39. 39)
      • 28. Mehdizadeh, A., Taghizadegan, N.: ‘Robust optimisation approach for bidding strategy of renewable generation-based microgrid under demand side management’, IET Renew. Power Gener., 2017, 11, (11), pp. 14461455.
    40. 40)
      • 36. Bertsimas, D., Thiele, A.: ‘A robust optimization approach to inventory theory’, Oper. Res., 2006, 54, (1), pp. 150168.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1127
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1127
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address