access icon free Improving the transient performance of DFIG wind turbine using pitch angle controller low pass filter timing and network side connected damper circuitry

In wind turbine systems, pitch angle controllers are employed to reduce the aerodynamic power gained during high wind speeds. On the other hand, passive filters are usually used to mitigate disturbances in grid-connected voltage source converters (VSCs). To avoid the risk of instability in the grid-connected VSC, as a result of resonance in the capacitive and inductive components, it is necessary to consider damping. In this study, the low pass filter timing constant of the pitch angle controller of the doubly-fed induction generator (DFIG) wind turbine was varied considering different time constants. The best timing response of the low pass filter was further used to analyse different filter topologies, in addition to a new control strategy that uses two trap passive filters with shunt resistor–capacitor as an active damper, in augmenting the DFIG wind turbine during grid fault. Simulation studies in PSCAD/EMTDC were carried out to compare the performance of the proposed scheme with some other conventional filter solutions for the DFIG wind generator, during a severe bolted three-phase to ground fault. The simulation results demonstrate the improved performance and faster recovery of the wind generator variables after the fault considering the proposed filter scheme.

Inspec keywords: passive filters; wind power plants; wind turbines; power convertors; aerodynamics; asynchronous generators; power grids; damping; power generation control; low-pass filters

Other keywords: timing response; wind generator variables; different time constants; high wind speeds; inductive components; different filter topologies; DFIG wind turbine; DFIG wind generator; pitch angle controller low pass filter timing; filter scheme; capacitive components; trap passive filters; conventional filter solutions; grid-connected VSC; induction generator wind turbine; wind turbine systems; network side connected damper circuitry; control strategy; grid-connected voltage source converters

Subjects: Asynchronous machines; Control of electric power systems; Wind power plants; Power convertors and power supplies to apparatus

References

    1. 1)
      • 37. Verveckken, J., Silva, J.F., Driesen, J.: ‘Optimal analytic LCL filter design for grid-connected voltage-source converter’. Proc. Eurocon, Zagreb, Croatia, 2013, pp. 823830.
    2. 2)
      • 36. Zeng, G., Rasmussen, T.W., Teodorescu, R.: ‘A novel optimized LCL-filter designing method for grid connected converter’. Proc. Int. Symp. on Power Electronics for Distributed Generation Systems, Hefei, China, 2010, vol. 2, pp. 802805.
    3. 3)
      • 58. Erickson, R.W., Maksimović, D.: ‘Fundamentals of power electronics’ (Springer US, Boston, MA, 2001).
    4. 4)
      • 60. Dugan, R.C., McGranaghan, M.F., Santoso, S., et al: ‘Electrical power systems quality’ (McGraw Hill, New York, USA, vol. 290, 2012).
    5. 5)
      • 45. Ramos, C., Martins, A., Carvalho, A.: ‘Active filtering of DFIG stator and rotor currents harmonics caused by distorted stator voltage’, EPE J., 2011, 21, (1), pp. 4354.
    6. 6)
      • 24. Lin, W., Hong, C., Ou, T., et al: ‘Hybrid intelligent control of PMSG wind generation system using pitch angle control with RBFN’, Energy Convers. Manage., 2011, 52, (2), pp. 12441251.
    7. 7)
      • 5. Yang, J.: ‘Fault analysis and protection for wind power generation Systems’. PhD dissertation, University of Glasgow, Glasgow, UK, 2011.
    8. 8)
      • 27. BDEW, Generating Plants Connected to the Medium-Voltage Network. Germany: Technical guideline, 2008.
    9. 9)
      • 34. Das, J.C.: ‘Power system harmonics and passive filter designs’ (Wiley-IEEE Press, Piscataway, NJ, 2015).
    10. 10)
      • 20. Gyawali, N., Ohsawa, Y., Yamamoto, O.: ‘Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser’, IET Renew. Power Gener., 2011, 5, (6), pp. 407421.
    11. 11)
      • 48. Okedu, K.E.: ‘Enhancing the performance of DFIG variable speed wind turbine using parallel integrated capacitor and modified modulated braking resistor’, IET Gener. Transm. Distrib., 2019, 13, (15), pp. 33783387.
    12. 12)
      • 29. Muhlethaler, J., Schweizer, M., Blattmann, R., et al: ‘Optimal design of LCL harmonic filters for three-phase PFC rectifiers’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 31143125.
    13. 13)
      • 42. Ahmed, K.H., Finney, S.J., Williams, B.W.: ‘Passive filter design for three-phase inverter interfacing in distributed generation’. Proc. Compatibility in Power Electronics, Perth, Australia, 2007, pp. 19.
    14. 14)
      • 35. Liserre, M., Dell'Aquila, A., Blaabjerg, F.: ‘Genetic algorithm-based design of the active damping for an LCL-filter three-phase active rectifier’, IEEE Trans. Power Electron., 2004, 19, (1), pp. 7686.
    15. 15)
      • 56. Middlebrook, R.D.: ‘Design techniques for preventing input-filter oscillations in switched-mode regulators’. Proc. Power Conversion Conf., Orlando, Florida, 1978, pp. A3.1A3.16.
    16. 16)
      • 54. Muhando, E.B., Senjyu, T., Uehara, A., et al: ‘LQG design for megawatt-class WECS with DFIG based on functional model's fidelity prerequisites’, IEEE Trans. Energy Convers., 2009, 24, (4), pp. 893904.
    17. 17)
      • 44. Baig, M.T., Amhad, A., Muazzam, M.: ‘Mitigation of harmonics in a grid connected DFIG wind power system’, Int. J. Emerg. Eng. Res. Technol., 2015, 3, (8), pp. 145153.
    18. 18)
      • 52. Yang, L., Xu, Z., Ostergaard, J., et al: ‘Oscillatory stability and eigenvalue sensitivity analysis of a DFIG WT system’, IEEE Trans. Energy Convers., 2011, 26, pp. 328339.
    19. 19)
      • 10. Yang, J., Fletcher, E., O'Reilly, J.: ‘A series dynamic resistor based converter protection schemes for doubly fed induction generator during various fault conditions’, IEEE Trans. Energy Convers., 2010, 25, (2), pp. 422432.
    20. 20)
      • 47. ‘PSCAD/EMTDC Manual’, Manitoba HVDC research centre, 2010.
    21. 21)
      • 23. Kamel, R.M., Chaouachi, A., Nagasaka, K.: ‘Enhancement of micro-grid performance during islanding mode using storage batteries and new fuzzy logic pitch angle controller’, Energy Convers. Manage., 2011, 52, (5), pp. 22042216.
    22. 22)
      • 30. Beres, R.N., Wang, X., Liserre, M., et al: ‘A review of passive power filters for three-phase grid connected voltage source converters’, IEEE J. Emerg. Sel. Topics Power Electron., 2016, xxx, (xx), pp. 116.
    23. 23)
      • 59. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,’ IEEE Std 519-1992, 9 April 1993, pp.1–112.
    24. 24)
      • 11. Ibrahim, A.O., Nguyen, T.H., Lee, D.C., et al: ‘A fault ride through technique of DFIG wind turbine systems using dynamic voltage restorers’, IEEE Trans. Energy Convers., 2011, 26, (3), pp. 871882.
    25. 25)
      • 14. Elshiekh, M.E, Mansour, D.A, Azmy, A.M.: ‘Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter’, IEEE Trans. Appl. Super Cond., 2013, 23, (3), p. 5601204.
    26. 26)
      • 41. Wang, T.C.Y., Ye, Z., Sinha, G., et al: ‘Output filter design for a grid-interconnected three-phase inverter’. IEEE 34th Annual Conf. on Power Electronics Specialist (PESC'03), Acapulco, Mexico, 2003, vol. 2, pp. 779784.
    27. 27)
      • 31. Hava, A.M., Lipo, T.A., Erdman, W.L.: ‘Utility interface issues for line connected PWM voltage source converters: a comparative study’. Proc. IEEE Applied Power Electronics Conf. and Exposition, Dallas, Texas, USA, 1995, pp. 125132.
    28. 28)
      • 12. Alaraifi, S., Moawwad, A., El Moursi, M.S., et al: ‘Voltage booster schemes for fault ride-through enhancement of variable speed wind turbines’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 10711081.
    29. 29)
      • 40. Shen, J., Schroder, S., Stagge, H., et al: ‘Impact of modulation schemes on the power capability of high-power converters with low pulse ratios’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 56965705.
    30. 30)
      • 49. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Wind farm stabilization by using DFIG with current controlled voltage source converters taking grid codes into consideration’, IEE J. Trans. Power Energy, 2012, 132, (3), pp. 251259.
    31. 31)
      • 53. Hosseini, E., Shahgholian, G.: ‘Output power leveling for DFIG wind turbine system using intelligent pitch angle control’, Automatika, 2017, 58, (4), pp. 363374.
    32. 32)
      • 16. Flannery, P.S., Venkataramanan, G.: ‘A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 11261135.
    33. 33)
      • 18. Alam, M.A., Rahim, A., Abido, M.A.: ‘Super capacitor based energy storage system for effective fault ride through of wind generation system’. Proc. IEEE Int. Symp. on Industrial Electronics (ISIE), Bari, Italy, July 4–7 2010, pp. 24812486.
    34. 34)
      • 46. Swami, N.K., Singh, B.: ‘Doubly fed induction generator for wind energy conversion systems with integrated active filter capabilities’, IEEE Trans. Ind. Inf., 2015, 11, (4), pp. 923933.
    35. 35)
      • 15. Huchel, L., El Moursi, M.S., Zeineldin, H.H.: ‘A parallel capacitor control strategy for enhanced FRT capability of DFIG’, IEEE Trans. Sustain. Energy, 2012, 6, (2), pp. 303312.
    36. 36)
      • 43. Peña-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘Analysis of the passive damping losses in LCL filter-based grid converters’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26422646.
    37. 37)
      • 57. Phelps, T.K., Tate, W.S.: ‘Optimizing passive input filter design’. Proc. of the 6th National Solid-State Power Conversion Conf., Miami, Florida, 1979.
    38. 38)
      • 21. Musyafa, A., Harika, A., Negara, I.M.Y., et al: ‘Pitch angle control of variable low rated speed wind turbine using fuzzy logic controller’, Int. J. Eng. Technol., 2010, 10, (5), pp. 2225.
    39. 39)
      • 25. Aldair, M.D.: ‘Pitch angle control design of wind turbine using fuzzy-art network’, J. Eng. Dev., 2014, 18, (4), pp. 3951.
    40. 40)
      • 19. Abbey, C., Joos, G.: ‘Supercapacitor energy storage for wind energy applications’, IEEE Trans. Ind. Appl., 2007, 43, (3), pp. 769776.
    41. 41)
      • 51. Guo, W, Xiao, L, Dai, S.: ‘Fault current limiter-battery energy storage system for the doubly-fed induction generator: analysis and experimental verification’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 653660.
    42. 42)
      • 32. Sun, J.: ‘Impedance-based stability criterion for grid-connected inverters’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 30753078.
    43. 43)
      • 7. Pannell, G., Zahawi, B., Atkinson, D.J, et al: ‘Evaluation of the performance of a DC-link brake chopper as a DFIG low-voltage fault-ride-through device’, IEEE Trans. Energy Convers., 2013, 28, (3), pp. 535542.
    44. 44)
      • 1. Erlich, I., Bachmann, U.: ‘Grid code requirements concerning connection and operation of wind turbines in Germany’. Proc. IEEE Power Engineering Society General Meeting, Duisburg, Germany, June 12–16 2005, pp. 22302234.
    45. 45)
      • 4. Ackermann, T., Abraham, E., Jens, F., et al: ‘Code shift: grid specifications and dynamic wind turbine models’, IEEE Power Energy Mag., 2013, 11, (6), pp. 7282.
    46. 46)
      • 39. Arrillaga, J., Watson, N.R.: ‘Power system harmonics’ (John Wiley & Sons, Ltd, Chichester, UK, 2003).
    47. 47)
      • 26. ‘Information stechnik, V. V. D. E. E. eV: VDE-AR-N 4105: 2011-08: Power generation systems connected to the low-voltage distribution network - Technical minimum requirements for the connection to and parallel operation with low-voltage distribution networks’, 2010.
    48. 48)
      • 6. Atkinson, D.J., Zahawi, B.: ‘Minimum-threshold crowbar for a fault-ride-through grid-code-compliant DFIG wind turbine’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 750759.
    49. 49)
      • 28. ‘IEEE Application Guide for IEEE Std 1547(TM), IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems’, in IEEE Std 1547.2-2008, 2009.
    50. 50)
      • 38. Shen, L., Asher, G., Wheeler, P., et al: ‘Optimal LCL filter design for 3-phase space vector PWM rectifiers on variable frequency aircraft power system’. 2013 15th European Conf. on Power Electronics and Applications EPE, Lille, France, 2013.
    51. 51)
      • 2. Marin, D., Camblong, H., Guillaud, X., et al: ‘Comparison of wind turbines technical regulations’. Proc. Int. Conf. on Industrial Technology, Mumbai, India, 2006, pp. 316321.
    52. 52)
      • 50. Petersson, A.: ‘Analysis modelling and control of doubly-fed induction generators for wind turbines’. PhD dissertation, Chalmers Univ. Technol., Goteborg, Sweden, 2005.
    53. 53)
      • 8. Okedu, K.E., Muyeen, S.M., Takahashi, R., et al: ‘Comparative study between two protection schemes for DFIG-based wind generator’. Int. Conf. on Electrical Machines and Systems (ICEMS), Seoul, South Korea, 2010.
    54. 54)
      • 33. Cespedes, M., Sun, J.: ‘Impedance modeling and analysis of grid connected voltage-source converters’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12541261.
    55. 55)
      • 55. Dugan, R., McGranaghan, M., Santoso, S., et al: ‘Electrical power systems quality’ (McGraw-Hill Professional, New York, 2002).
    56. 56)
      • 61. Wu, W., He, Y., Blaabjerg, F.: ‘An LLCL power filter for single-phase grid-tied inverter’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 782789.
    57. 57)
      • 3. Erlich, I., Winter, W., Dittrich, A.: ‘Advanced grid requirements for the integration of wind turbines into the German transmission system’. Proc. IEEE Power Engineering Society General Meeting, Duisburg, Germany, 2006, pp. 77.
    58. 58)
      • 17. Okedu, K.E.: ‘Enhancing DFIG wind turbine during three-phase fault using parallel interleaved converters and dynamic resistor’, IET Renew. Power Gener., 2016, 10, (6), pp. 12111219.
    59. 59)
      • 13. Huang, P.H, El Moursi, M.S., Xiao, W., et al: ‘Novel fault ride-through configuration and transient management scheme for doubly fed induction generator’, IEEE Trans. Energy Convers., 2013, 28, (1), pp. 8694.
    60. 60)
      • 22. Van, T.L., Nguyen, T.H., Lee, D.C.: ‘Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems’, IEEE Trans. Energy Convers., 2015, 30, (2), pp. 578587.
    61. 61)
      • 9. Okedu, K.E., Muyeen, S. M., Takahashi, R., et al: ‘Wind farms fault ride through using DFIG with new protection scheme’, IEEE Trans. Sustain. Energy, 2012, 3, (2), pp. 242254.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1124
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1124
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading