access icon free Investigation of structure and performance of a permanent magnet vernier induction generator for use in double-turbine wind systems in urban areas

In this study, a new double-rotor permanent magnet vernier induction wind generator is proposed, which can be connected directly to a double-turbine system used in urban areas. The proposed generator consists of a vernier machine and a squirrel-cage induction machine, which includes a stator and two concentric rotors (a permanent magnet outer rotor and a squirrel-cage inner one). Accordingly, first, the relationships governing the structures of each rotor are presented and investigated. Then, the performance of the generator connecting to a double-turbine system is analysed. Optimisation of the presented generator is investigated by finite-element analysis and also a laboratory prototype is constructed. Finally, both simulation and experimental results are compared, and the reliability of the proposed generator is validated.

Inspec keywords: permanent magnet machines; asynchronous generators; finite element analysis; rotors; stators; squirrel cage motors

Other keywords: permanent magnet vernier induction generator; urban areas; double-rotor permanent magnet vernier induction wind generator; presented generator; double-turbine system; vernier machine; squirrel-cage induction machine; permanent magnet outer rotor; concentric rotors; double-turbine wind systems

Subjects: a.c. machines; Wind power plants; Asynchronous machines; Finite element analysis

References

    1. 1)
      • 5. Zhao, X., Zhou, P., Liang, X., et al: ‘The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines’, Renew. Energy, 2020, 146, pp. 18.
    2. 2)
      • 14. Kutt, F., Blecharz, K., Karkosiński, D.: ‘Axial-flux permanent-magnet dual-rotor generator for a counter-rotating wind turbine’, Energies, 2020, 13, (11), p. 2833.
    3. 3)
      • 22. Wu, L., Qu, R., Li, D., et al: ‘Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet vernier machines’, IEEE Trans. Ind. Appl., 2015, 51, (5), pp. 37073715.
    4. 4)
      • 20. Yin, X., Fang, Y., Pfister, P.-D.: ‘High-torque-density pseudo-direct-drive permanent-magnet machine with less magnet’, IET Electr. Power Appl., 2017, 12, (1), pp. 3744.
    5. 5)
      • 23. Kim, B., Lipo, T.A.:Operation and design principles of a PM vernier motor’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 36563663.
    6. 6)
      • 13. Neagoe, M.: ‘Steady-state response of a dual-rotor wind turbine with counter-rotating electric generator and planetary gear increaser’. USCToMM Symp. on Mechanical Systems and Robotics, Rapid City, SD, USA, 2020.
    7. 7)
      • 17. Janakiraman, R., Paramasivam, S.: ‘Modeling of contra-rotating permanent magnet synchronous machine for a wind power generation’. 2012 Int. Conf. on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), Chennai, India, 2012.
    8. 8)
      • 24. Cheng, M.: ‘Design and analysis of permanent magnet induction generator for grid-connected direct-driven wind power application’. 2015 Tenth Int. Conf. on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 2015.
    9. 9)
      • 6. Lam, H., Peng, H.: ‘Measurements of the wake characteristics of co-and counter-rotating twin H-rotor vertical axis wind turbines’, Energy, 2017, 131, pp. 1326.
    10. 10)
      • 10. Mitulet, L.-A., Oprina, G., Chihaia, R.-A., et al: ‘Wind tunnel testing for a new experimental model of counter-rotating wind turbine’, Procedia Eng., 2015, 100, pp. 11411149.
    11. 11)
      • 3. Zavvos, A., McDonald, A., Mueller, M.: ‘Optimisation tools for large permanent magnet generators for direct-drive wind turbines’, IET Renew. Power Gener., 2013, 7, (2), pp. 163171.
    12. 12)
      • 12. Kanemoto, T., Galal, A.M.: ‘Development of intelligent wind turbine generator with tandem wind rotors and double rotational armatures’, JSME Int. J. B, Fluids Therm. Eng., 2006, 49, (2), pp. 450457.
    13. 13)
      • 1. Scott Semken, R., Polikarpova, M., Röyttä, P., et al:Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors’, IET Renew. Power Gener., 2012, 6, (1), pp. 18.
    14. 14)
      • 9. Jung, S.N., No, T.-S., Ryu, K.-W.: ‘Aerodynamic performance prediction of a 30 kW counter-rotating wind turbine system’, Renew. Energy, 2005, 30, (5), pp. 631644.
    15. 15)
      • 15. No, T.S., Kim, J.-E., Moon, J.H., et al: ‘Modeling, control, and simulation of dual rotor wind turbine generator system’, Renew. Energy, 2009, 34, (10), pp. 21242132.
    16. 16)
      • 7. Vasel-Be-Hagh, A., Archer, C.L.: ‘Wind farms with counter-rotating wind turbines’, Sustain. Energy Technol. Assess., 2017, 24, pp. 1930.
    17. 17)
      • 25. Gao, Y., Qu, R., Li, D., et al: ‘A novel dual-stator vernier permanent magnet machine’, IEEE Trans. Magn., 2017, 53, (11), pp. 15.
    18. 18)
      • 16. Booker, J.D., Mellor, P.H., Wrobel, R., et al: ‘A compact, high efficiency contra-rotating generator suitable for wind turbines in the urban environment’, Renew. Energy, 2010, 35, (9), pp. 20272033.
    19. 19)
      • 8. Wang, Z., Ozbay, A., Tian, W., et al: ‘An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine’, Energy, 2018, 147, pp. 94109.
    20. 20)
      • 11. Zhiqiang, L., Yunke, W., Jie, H., et al: ‘The study on performance and aerodynamics of micro counter-rotating HAWT’, Energy, 2018, 161, pp. 939954.
    21. 21)
      • 19. Kim, B., Lipo, T.A.: ‘Operation and design principles of a PM vernier motor’. 2013 IEEE Energy Conversion Congress and Exposition, Raleigh, NC, USA, 2013.
    22. 22)
      • 2. Gonçalves, P.F., Cruz, S.M., Mendes, A.M.: ‘Design of a six-phase asymmetrical permanent magnet synchronous generator for wind energy applications’, J. Eng., 2019, 2019, (17), pp. 45324536.
    23. 23)
      • 4. Didane, D.H., Rosly, N., Zulkafli, M.F., et al: ‘Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept’, Renew. Energy, 2018, 115, pp. 353361.
    24. 24)
      • 21. Tlali, P.M., Wang, R.-J., Gerber, S., et al: ‘Design and performance comparison of vernier and conventional PM synchronous wind generators’, IEEE Trans. Ind. Appl., 2020, 56, (3), pp. 25702579.
    25. 25)
      • 18. Luo, X., Niu, S.: ‘A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy’, IEEE Trans. Power Electron., 2016, 32, (9), pp. 69246935.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1093
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1093
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading