Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Two-tier combined active and reactive power controls for VSC–HVDC-connected large-scale wind farm cluster based on ADMM

To reduce the voltage fluctuations inside the wind farm cluster (WFC), a combined active and reactive power control schemes based on model predictive control is proposed. The aims of the proposed control scheme are to maintain the collector bus and wind turbine (WT) terminal voltages within the feasible range. With the size of WFC increasing, conventional centralised optimal control may no longer be suitable for a large-scale WFC due to the high computation burden of the WFC central controller. To improve the calculation efficiency and protect information privacy, a two-tier control structure with alternating direction method of multipliers (ADMMs) algorithm is used to solve the large-scale optimisation problem in distributed/hierarchical manner. In the upper-tier distributed control, the active and reactive power outputs of the WFs are coordinated to enhance the voltage control performance. In the lower-tier control, an ADMM-based hierarchical control is developed to minimise the voltage deviation of the WT terminals. Case studies demonstrate the efficacy of the proposed two-tier combined active and reactive power controls.

References

    1. 1)
      • 3. Hou, P., Hu, W., Soltani, M., et al: ‘Offshore wind farm layout design considering optimized power dispatch strategy’, IEEE Trans. Sustain. Energy, 2016, 8, (2), pp. 638647.
    2. 2)
      • 8. Noureldeen, O., Hamdan, I.: ‘Design of robust intelligent protection technique for large-scale grid-connected wind farm’, Prot. Control Mod. Power Syst., 2018, 3, (3), pp. 169182.
    3. 3)
      • 27. Kraning, M., Chu, E., Lavaei, J., et al: ‘Dynamic network energy management via proximal message passing’, Found. Trends Optim., 2014, 1, (2), pp. 73126.
    4. 4)
      • 4. Zeng, R., Xu, L., Yao, L., et al: ‘Hybrid HVDC for integrating wind farms with special consideration on commutation failure’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 789797.
    5. 5)
      • 24. Guo, Y., Gao, H., Wu, Q.: ‘Distributed cooperative voltage control of wind farms based on consensus protocol’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 593602.
    6. 6)
      • 1. Kroposki, B., Johnson, B., Zhang, Y., et al: ‘Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy’, IEEE Power Energy Mag., 2017, 15, (2), pp. 6173.
    7. 7)
      • 25. Guo, Y., Gao, H., Xing, H., et al: ‘Decentralized coordinated voltage control for VSC–HVDC-connected WFs based on ADMM’, IEEE Trans. Sustain. Energy, 2018, 10, (2), pp. 800810.
    8. 8)
      • 15. Hou, P., Hu, W., Zhang, B., et al: ‘Optimised power dispatch strategy for offshore wind farms’, IET Renew. Power Gener., 2016, 10, (3), pp. 399409.
    9. 9)
      • 5. Liu, H., Chen, Z.: ‘Contribution of VSC–HVDC to frequency regulation of power systems with offshore wind generation’, IEEE Trans. Energy Convers., 2015, 30, (3), pp. 918926.
    10. 10)
      • 16. Huang, S., Wu, Q., Guo, Y., et al: ‘Optimal active power control based on MPC for DFIG-based wind farm equipped with distributed energy storage systems’, Int. J. Electr. Power Energy Syst., 2019, 113, pp. 154163.
    11. 11)
      • 9. Meral, M.E., Çelík, D.: ‘A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions’, Annu. Rev. Control, 2019, 47, pp. 112132.
    12. 12)
      • 29. Guo, Y., Gao, H., Wu, Q., et al: ‘Coordinated voltage control scheme for VSC–HVDC-connected wind power plants’, IET Renew. Power Gener., 2018, 12, (2), pp. 198206.
    13. 13)
      • 7. Huang, S., Wu, Q., Guo, Y., et al: ‘Hierarchical active power control of DFIG-based wind farm with distributed energy storage systems based on ADMM’, IEEE Trans. Sustain. Energy, 2019, in press.
    14. 14)
      • 14. Li, D., Wang, S., Lei, W., et al: ‘Method for wind farm cluster active power optimal dispatch under restricted output condition’. 2015 Fifth Int. Conf. IEEE Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), China, 2015, pp. 19811986.
    15. 15)
      • 28. Christakou, K., LeBoudec, J.Y., Paolone, M., et al: ‘Efficient computation of sensitivity coefficients of node voltages and line currents in unbalanced radial electrical distribution networks’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 741750.
    16. 16)
      • 22. Zhao, H., Wu, Q., Guo, Q., et al: ‘Coordinated voltage control of a wind farm based on model predictive control’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 14401451.
    17. 17)
      • 26. Boyd, S., Parikh, N., Chu, E., et al: ‘Distributed optimization and statistical learning via the alternating direction method of multipliers’, Found. Trends Mach. Learn., 2011, 3, (1), pp. 1122.
    18. 18)
      • 21. Yan, W., Cui, W., Lee, W.J., et al: ‘Pilot-bus-centered automatic voltage control with high penetration level of wind generation’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 19621969.
    19. 19)
      • 20. Zhang, B., Hou, P., Hu, W., et al: ‘A reactive power dispatch strategy with loss minimization for a DFIG-based wind farm’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 914923.
    20. 20)
      • 10. Nycander, E., Söder, L.: ‘Review of European grid codes for wind farms and their implications for wind power curtailments’. 17th Int. Wind Integration Workshop, Stockholm, Sweden, October 2018, pp. 1719.
    21. 21)
      • 12. Li, D.Y., Li, P., Cai, W.C., et al: ‘Adaptive fault-tolerant control of wind turbines with guaranteed transient performance considering active power control of wind farms’, IEEE Trans. Ind. Electron., 2017, 65, (4), pp. 32753285.
    22. 22)
      • 19. Schönleber, K., Collados, C., Pinto, R.T., et al: ‘Optimization-based reactive power control in HVDC-connected wind power plants’, Renew. Energy, 2017, 109, pp. 500509.
    23. 23)
      • 11. Huang, S., Wu, Q., Guo, Y., et al: ‘Bi-level decentralized active power control for large-scale wind farm cluster’, IET Renew. Power Gener., 2018, 12, (13), pp. 14861492.
    24. 24)
      • 2. Boubzizi, S., Abid, H., Chaabane, M.: ‘Comparative study of three types of controllers for DFIG in wind energy conversion system’, Prot. Control Mod. Power Syst., 2018, 3, (1), p. 21.
    25. 25)
      • 13. Guo, Y., Gao, H., Wu, Q., et al: ‘Enhanced voltage control of VSC–HVDC-connected offshore wind farms based on model predictive control’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 474487.
    26. 26)
      • 18. Cardiel-Alvarez, M.A., Arnaltes, S., Rodriguez-Amenedo, J.L., et al: ‘Decentralized control of offshore wind farms connected to diode-based HVDC links’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 12331241.
    27. 27)
      • 23. Yuan, L., Meng, K., Dong, Z.Y.: ‘Hierarchical control scheme for coordinated reactive power regulation in clustered wind farms’, IET Renew. Power Gener., 2018, 12, (10), pp. 11191126.
    28. 28)
      • 30. Camponogara, E., Jia, D., Krogh, B.H., et al: ‘Distributed model predictive control’, IEEE Control Syst. Mag., 2002, 9, (1), pp. 4452.
    29. 29)
      • 17. Li, Y., Xu, Z., Zhang, J., et al: ‘Variable droop voltage control for wind farm’, IEEE Trans. Sustain. Energy, 2018, 9, (1), pp. 491493.
    30. 30)
      • 6. Hou, P., Hu, W., Soltani, M., et al: ‘Offshore wind farm layout design considering optimized power dispatch strategy’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 638647.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1089
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address