access icon free PV hosting capacity of LV distribution networks using smart inverters and storage systems: a practical margin

This study proposes an approach to evaluate a practical margin for photovoltaic (PV) generation hosting capacity (HC) of low voltage distribution networks. This HC is determined considering the randomness of the connection points and is supposed to be the maximum value of PV penetration up to which the utility can authorise any interconnection without performing additional case studies. Smart inverter control strategies and battery storage systems are used to avoid costly network expansion solutions. The simulations are performed using actual solar radiation data and residential demand profiles. The results show an increase in the network HC, bringing benefits by deferring network investments such as conductors and asset upgrades.

Inspec keywords: invertors; demand side management; power generation control; battery storage plants; power distribution economics; investment; power distribution control; photovoltaic power systems; power grids; power generation economics

Other keywords: smart inverter control strategies; actual solar radiation data; residential demand profiles; photovoltaic generation hosting capacity; LV distribution networks; connection points; low voltage distribution networks; PV hosting capacity; network investments; PV penetration; battery storage systems; network HC

Subjects: DC-AC power convertors (invertors); Solar power stations and photovoltaic power systems; Control of electric power systems; Power system control; Power system management, operation and economics; Secondary cells; Distribution networks

References

    1. 1)
      • 18. Hoke, A., Buttler, R., Hambrick, J., et al: ‘Maximum photovoltaic penetration levels on typical distribution feeders’. National Renewable Energy Laboratory, 2012, pp. 116. Available at https://www.nrel.gov/docs/fy12osti/55094.pdf.
    2. 2)
      • 19. Ding, F., Marther, B., Gotseff, P.: ‘Technologies to increase PV hosting capacity in distribution feeders’. IEEE Power and Energy Society General Meeting, Boston, USA, July 2016, pp. 15.
    3. 3)
      • 11. Smith, J., Rylander, M.: ‘PV hosting capacity on distribution feeders’. IEEE Power & Energy Society General Meeting, Washington, USA, July 2014, pp. 115.
    4. 4)
      • 4. Wong, P.K.C., Kalam, A., Robert, B.: ‘Modelling and analysis of practical options to improve the hosting capacity of low voltage networks for embedded photo-voltaic generation’, IET Renew. Power Gener., 2017, 11, (5), pp. 625632.
    5. 5)
      • 8. Radatz, P., Kagan, N., Rocha, C., et al: ‘Assessing Maximum DG penetration levels in a real distribution feeder by using OpenDSS’. 17th Int. Conf. on Harmonics and Quality of Power, Belo Horizonte, Brazil, December 2016, pp. 7176.
    6. 6)
      • 22. Appen, J.V., Braun, M., Stetz, T., et al: ‘Time in the sun the challenge of high PV penetration in the German electric grid’, IEEE Power Energy Mag., 2013, 11, (2), pp. 5564.
    7. 7)
      • 37. Choi, C.: ‘Rule 21: generating facility interconnections’. Southern California Edison, 2017, pp. 1198. Available at https://www.sce.com/business/generating-your-own-power/Grid-Interconnections/Interconnecting-Generation-under-Rule-21.
    8. 8)
      • 14. Smith, J.: ‘Modeling high-penetration PV for distribution interconnection studies smart – inverter function modeling in OpenDSS, Rev. 3’. Electric Power Research Institute, 2017, pp. 192. Available at https://sourceforge.net/p/electricdss/discussion/861976/thread/1d3745ab/643f/attachment/OpenDSSSmartInverterModeling-EPRI-000000003002002271.pdf.
    9. 9)
      • 30. McKenna, E., Thomson, M.: ‘CREST demand model’, Appl. Energy, 2016, 165, pp. 445461.
    10. 10)
      • 32. Agência Nacional de Energia Elétrica – ANEEL: ‘Nota Técnica n°. 0056/2017-SRD/ANEEL’, 2017.
    11. 11)
      • 24. Fila, M., Reid, D., Taylor, G.A., et al: ‘Coordinated voltage control for active network management of distributed generation’. IEEE Power & Energy Society General Meeting, Calgary, Canada, October 2009, pp. 18.
    12. 12)
      • 26. Potty, K.A., Keny, P., Nagarajan, C.: ‘An intelligent microgrid with distributed generation’. IEEE Innovative Smart Grid Technologies Asia, Bangalore, India, November 2013, pp. 16.
    13. 13)
      • 28. Ballanti, A., Ochoa, L.F.: ‘On the integrated PV hosting capacity of MV and LV distribution networks’. IEEE/PES Innovative Smart Grid Technologies ISGT Latin America, Montevideo, Uruguay, January 2016, pp. 15.
    14. 14)
      • 35. Wirth, H.: ‘Recent facts about photovoltaics in Germany’. Fraunhofer Institute for Solar Energy Systems, 2018, pp. 188. Available at https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/recent-facts-about-photovoltaics-in-germany.pdf.
    15. 15)
      • 6. Dubey, A., Santoso, S.: ‘On estimation and sensitivity analysis of distribution circuit's photovoltaic hosting capacity’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 27792789.
    16. 16)
      • 15. Parajeles, M.J., Quirós-Tortos, J., Valverde, G.: ‘Assessing the performance of smart inverters in large-scale distribution networks with PV systems’. IEEE Power & Energy Society Innovative Smart Grid Technologies Conf., Quito, Ecuador, December 2017, pp. 16.
    17. 17)
      • 13. Procopiou, A.T.: ‘Active Management of PV-Rich Low Voltage Networks’. Ph.D. thesis, Faculty of Engineering and Physical Sciences, University of Manchester, 2017.
    18. 18)
      • 10. Rossi, M., Viganò, G., Moneta, D.: ‘Hosting capacity of distribution networks: evaluation of the network congestion risk due to distributed generation’. Int. Conf. on Clean Electrical Power, Taormina, Italy, August 2015, pp. 716722.
    19. 19)
      • 20. Altin, M., Oguz, E.U., Bizkevelci, E., et al: ‘Distributed generation hosting capacity calculation of MV distribution feeders in Turkey’. IEEE Power & Energy Society Innovative Smart Grid Technologies Europe, Istambul, Turkey, February 2014, pp. 17.
    20. 20)
      • 27. PES AMPS DSAS test feeder working group’, Available at http://sites.ieee.org/pes-testfeeders/resources/, accessed 14 August 2019.
    21. 21)
      • 16. Dao, V.T., Ishii, H., Hayashi, Y.: ‘Optimal smart functions of large-scale PV inverters in distribution systems’. IEEE Innovative Smart Grid Technologies, Auckland, New Zeeland, June 2017, pp. 17.
    22. 22)
      • 7. Kitworawut, P.B., Azuatalam, D.T., Collin, A.J.: ‘An investigation into the technical impacts of microgeneration on UK-type LV distribution networks’. Australasian Universities Power Engineering Conf., Brisbane, Australia, November 2016, pp. 124129.
    23. 23)
      • 5. Tang, N.C., Chang, G.W.: ‘A stochastic approach for determining PV hosting capacity of a distribution feeder considering voltage quality constraints’. 18th Int. Conf. on Harmonics and Quality of Power, Ljubljana, Slovenia, June 2018, pp. 15.
    24. 24)
      • 12. Smart grid resource center: simulation tool – OpenDSS’, Available at http://smartgrid.epri.com/SimulationTool.as px, accessed 13 August 2019.
    25. 25)
      • 17. Muenzel, V., Mareels, I., Hoog, J., et al: ‘PV generation and demand mismatch: evaluating the potential of residential storage’. IEEE Power & Energy Society Innovative Smart Grid Technologies Conf., Washington, USA, June 2015, pp. 15.
    26. 26)
      • 1. Papathanassiou, S., Hatziargyriou, N., Anagnostopoulos, P., et al: ‘Capacity of distribution feeders for hosting DER’. CIGRÉ, Working Group C6.24, 2014, pp. 1149. Available at https://www.cigreaustralia.org.au/assets/ITL-SEPT-2014/3.1-Capacity-of-Distribution-Feeders-for-hosting-Distributed-Energy-Resources-DER-abstract.pdf.
    27. 27)
      • 9. Quintero-Molina, V., Romero, M., Pavas, A.: ‘Assessment of the hosting capacity in distribution networks with different DG location’. IEEE Manchester Power Tech, Manchester, England, July 2017, pp. 16.
    28. 28)
      • 33. Laaksonen, H., Kauhaniemi, K., Voima, S.: ‘Microgrid voltage level management and role as part of smart grid voltage control’. IEEE Powertech, Trondheim, Norway, September 2011, pp. 18.
    29. 29)
      • 34. Ardani, K., O'Shaughnessy, E., Fu, R., et al: ‘Installed cost benchmarks and deployment barriers for residential solar photovoltaics with energy storage: Q1 2016’. NREL, 2017, pp. 141. Available at https://www.nrel.gov/docs/fy17osti/67474.pdf.
    30. 30)
      • 36. Rotstein, J., Edwards, D., Manjire, A.: ‘Low voltage EG connection technical requirements’. Horizon Power Corporation, 2017, pp. 1106. Available at https://horizonpower.com.au/media/5183/low-voltage-eg-connection-technical-requirements-2019.pdf.
    31. 31)
      • 25. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids: an overview of ongoing research, development, and demonstration projects’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    32. 32)
      • 29. Inácio, C.O., Borges, C.L.T.: ‘Stochastic model for generation of high-resolution irradiance data and estimation of power output of photovoltaic plants’, IEEE Trans Sustain Energy, 2018, 9, (2), pp. 952960.
    33. 33)
      • 21. Agüero, J.R., Steffel, S.J.: ‘Integration challenges of photovoltaic distributed generation on power distribution systems’. IEEE Power and Energy Society General Meeting, San Diego, USA, October 2011, pp. 16.
    34. 34)
      • 2. Baldenko, N., Behzadirafi, S.: ‘Determination of photovoltaic hosting capacity on radial electric distribution feeders’. IEEE Int. Conf. on Power System Technology, Wollongong, Australia, November 2016, pp. 14.
    35. 35)
      • 3. Hashemi, S., Østergaard, J.: ‘Methods and strategies for overvoltage prevention in low voltage distribution systems with PV’, IET Renew. Power Gener., 2017, 11, (2), pp. 205214.
    36. 36)
      • 23. Varela, J., Hatziargyriou, N., Puglisi, L.J., et al: ‘The IGREENGrid project: increasing hosting capacity in distribution grids’, IEEE Power Energy Mag., 2017, 15, (3), pp. 3040.
    37. 37)
      • 31. Sistema de Organização Nacional de Dados Ambientais – Sonda’, Available at http://sonda.ccst.inpe.br/index.html, accessed 14 August 2019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1054
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading