access icon free Enhancing performance of photovoltaic panel by cold plate design with guided channels

Photovoltaic (PV) panel is subjected to high temperatures from solar radiation. The performance of the PV panel deteriorates as the PV's operating temperature increases. This study aims to examine the cooling method using a cold plate attached to the PV panel to lower its operating temperature. The cold plate consists of several guided channels or ribbed walls of thickness 0.015 m to direct the circulating water flow from its entrance to the exit point at the back of the PV panel. The experiment demonstrates a decrease of around 21.2°C in surface temperature and improves ∼2% in electrical efficiency, 8% in thermal efficiency and 1.6% in PV panel efficiency as compared to PV panel without a cooling system. The relationship between the average PV's surface temperature and output power is obtained. The uncertainty analysis shows that the average standard deviation in PVs, electrical and thermal efficiency is not more than 1.26% when subjected to differences in the day of measurements, mass flow rate, and pressure of the pump.

Inspec keywords: photovoltaic power systems; thermal management (packaging); plates (structures); cooling

Other keywords: PV panel deteriorates; enhancing performance; temperature 21.2 degC; cold plate design; average PV's surface temperature; size 0.015 m; PV's operating temperature increases; photovoltaic panel; PV panel efficiency; guided channels

Subjects: Solar power stations and photovoltaic power systems; Applied fluid mechanics; Product packaging

References

    1. 1)
      • 40. Adham, A.M., Ghazali, M.N., Ahmad, R.: ‘Thermal and hydrodynamic analysis of microchannel heatsinks: a review’, Renew. Sustain. Energy Rev., 2013, 21, pp. 614622.
    2. 2)
      • 34. Modjinou, M., Ji, J., Yuan, W., et al: ‘Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems’, Energy, 2019, 166, pp. 12491266.
    3. 3)
      • 44. Vafai, K., Zhu, L.: ‘Analysis of two-layered micro-channel heatsink concept in electronic cooling’, Int. J. Heat Mass Transf., 1999, 42, (12), pp. 22872297.
    4. 4)
      • 1. Haberlin, N.: ‘Photovoltaics system design and practice’ (Wiley, Hoboken, NJ, 2014), ISBN: 978-1-119-99285-1.
    5. 5)
      • 58. Elminshawy, N.A.S., Mohamed, A.M.I., Morad, K., et al: ‘Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic’, Appl. Therm. Eng., 2019, 148, pp. 19.
    6. 6)
      • 9. Shukla, A., Kant, K., Sharma, A., et al: ‘Cooling methodologies of photovoltaic module for enhancing electrical efficiency: a review’, Sol. Energy Mater. Sol. Cells, 2017, 160, pp. 275286.
    7. 7)
      • 14. Popovici, C.G., Hudișteanu, S.V., Mateescu, T.D., et al: ‘Efficiency improvement of photovoltaic panels by using air cooled heat sinks’, Energy Procedia, 2016, 85, pp. 425432.
    8. 8)
      • 16. Cui, M., Chen, N., Yang, X., et al: ‘Thermal analysis and test for single concentrator solar cells’, J. Semicond., 2009, 41, (29), p. 044011, Available at: https://iopscience.iop.org/article/10.1088/1674-4926/30/4/044011/pdf.
    9. 9)
      • 45. Missaggia, L.J., Walpole, J.N.: ‘Microchannel heatsink with alternating directions of water flow in adjacent channels’., Boston, MA, USA.Proc. SPIE, 1992, 1582, pp. 106111.
    10. 10)
      • 8. Bahaidarah, H.M.S., Baloch, A.A.B., Gandhidasan, P.: ‘Uniform cooling of photovoltaic panels: a review’, Renew. Sustain. Energy Rev., 2016, 57, pp. 15201544,.
    11. 11)
      • 72. Malik, A.Q., Damit, S.J.B.H.: ‘Outdoor testing of single crystal silicon solar cells’, Renew. Energy, 2003, 28, (9), pp. 14331445.
    12. 12)
      • 56. Siddiqui, M.U., Siddiqui, O.K., Al-Sarkhi, A., et al: ‘A novel heat exchanger design procedure for photovoltaic panel cooling application: an analytical and experimental evaluation’, Appl. Energy, 2019, 239, pp. 4156.
    13. 13)
      • 67. Tiwari, G.N., Dubey, S.: ‘Fundamentals of photovoltaic modules and their applications’ (Royal Society of Chemistry, UK., 2010).
    14. 14)
      • 30. Han, X., Wang, Y., Zhu, L.: ‘Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids’, Appl. Energy, 2011, 88, (12), pp. 44814489.
    15. 15)
      • 60. Zapałowicz, Z., Opiela, A.: ‘Boundary value of the air distribution coefficient that ensures working effectivity of the air-condition system connected with ground heat exchanger and with PV installation’, Sustain. Cities Soc., 2018, 42, pp. 9399.
    16. 16)
      • 47. Krishan, G., Aw, K.C., Sharma, R.N.: ‘Synthetic jet impingement heat transfer enhancement – a review’, Appl. Therm. Eng., 2019, 149, pp. 13051323.
    17. 17)
      • 43. Ryu, J.H., Choi, D.H., Kim, S.J.: ‘Three-dimensional numerical optimization of a manifold microchannel heatsink’, Int. J. Heat Mass Transf., 2003, 46, pp. 15531562.
    18. 18)
      • 25. Maiti, S., Banerjee, S., Vyas, K., et al: ‘Self-regulation of photovoltaic module temperature in V-trough using a metal–wax composite phase change matrix’, Sol. Energy, 2011, 85, (9), pp. 18051816.
    19. 19)
      • 29. Han, X., Wang, Q., Zheng, J., et al: ‘Thermal analysis of direct liquid-immersed solar receiver for high concentrating photovoltaic system’, Int. J. Photoenergy, 2015, 2015, pp. 19, Article ID 321350.
    20. 20)
      • 54. Baloch, A.A.B., Bahaidarah, H.M.S., Gandhidasan, P., et al: ‘Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling’, Energy Convers. Manage., 2015, 103, pp. 1427.
    21. 21)
      • 50. Womac, D.J., Ramadhyani, S., Incropera, F.P.: ‘Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets’, J. Heat Transf., 1994, 116, (2), pp. 482486.
    22. 22)
      • 15. Araki, M., Uozumi, K., Yamaguchi, H.: ‘A simple passive cooling structure and its heat analysis for 500X concentrator PV module’. Proc. 29th IEEE PVSC, New Orleans, LA, USA, 2002, pp. 15681571.
    23. 23)
      • 7. Hasanuzzaman, M., Malek, A.B.M.A., Islam, M.M., et al: ‘Global advancement of cooling technologies for PV systems: a review’, Sol. Energy, 2016, 137, pp. 2545.
    24. 24)
      • 2. Armstrong, S., Hurley, W.G.: ‘A thermal model for photovoltaic panels under varying atmospheric conditions’, Appl. Therm. Eng., 2010, 30, pp. 14881495.
    25. 25)
      • 63. Huang, X., Yang, W., Ming, T., et al: ‘Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples’, Int. J. Heat Mass Transf., 2017, 112, pp. 113124.
    26. 26)
      • 61. Idoko, L., Lara, O.A., McDonald, A.: ‘Enhancing PV modules efficiency and power output using multi-concept cooling technique’, Energy Rep., 2018, 4, pp. 357369.
    27. 27)
      • 11. Yazdanifard, F., Ameri, M.: ‘Exergetic advancement of photovoltaic/thermal systems (PV/T): a review’, Renew. Sustain. Energy Rev., 2018, 97, pp. 529553.
    28. 28)
      • 38. Garimella, S.V., Sobhan, C.B.: ‘Transport in microchannels-a critical review’, Annu. Rev. Heat Transf., 2003, 13, (13), pp. 150.
    29. 29)
      • 52. Huber, A.M., Viskanta, R.: ‘Effect of jet–jet spacing on convective heat transfer to confined, impinging arrays of axisymmetric air jets’, Int. J. Heat Mass Transf., 1994, 37, (18), pp. 28592869.
    30. 30)
      • 17. Rajput, U.J., Yang, J.: ‘Comparison of heat sink and water type PV/T collector for polycrystalline photovoltaic panel cooling’, Renew. Energy, 2018, 116, (A), pp. 479491.
    31. 31)
      • 55. Wu, S.Y., Wang, T., Xiao, L., et al: ‘Effect of cooling channel position on heat transfer characteristics and thermoelectric performance of air-cooled PV/T system’, Sol. Energy, 2019, 180, pp. 489500.
    32. 32)
      • 13. Hetsroni, G., Mosyaka, A., Segala, Z., et al: ‘A uniform temperature heat sink for cooling of electronic devices’, Int. J. Heat Transf., 2002, 45, pp. 32753286.
    33. 33)
      • 6. Florida Solar Energy Center (FSEC): ‘Test method for photovoltaic module power rating’, FSEC Standard 202-10, 2010.
    34. 34)
      • 41. Gilmore, N., Timchenko, V., Menictas, C.: ‘Microchannel cooling of concentrator photovoltaics: a review’, Renew. Sustain. Energy Rev., 2018, 90, pp. 10411059.
    35. 35)
      • 22. Karthick, A., Murugavel, K., Ramanan, P.: ‘Performance enhancement of a building-integrated photovoltaic module using phase change material’, Energy, 2018, 142, pp. 803812.
    36. 36)
      • 73. Teo, H.G., Lee, P.S., Hawlader, M.N.A.: ‘An active cooling system for photovoltaic modules’, Appl. Energy, 2012, 90, (1), pp. 309315.
    37. 37)
      • 27. Liu, L., Zhu, L., Wang, Y., et al: ‘Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations’, Sol. Energy, 2011, 85, (5), pp. 922930.
    38. 38)
      • 18. Chandela, S.S., Agarwal, T.: ‘Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems’, Renew. Sustain. Energy Rev., 2017, 73, pp. 13421351.
    39. 39)
      • 49. Webb, B.W., Ma, C.F.: ‘Single-phase liquid jet impingement heat transfer’, Adv. Heat Transf., 1995, 26, (2), pp. 105217.
    40. 40)
      • 39. Salman, B.H.H., Mohammed, H.A., Munisamy, K.M.M., et al: ‘Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: a review’, Renew. Sustain. Energy Rev., 2013, 28, pp. 848880.
    41. 41)
      • 57. Yang, L.H., Liang, J.D., Hsu, C.Y., et al: ‘Enhanced efficiency of photovoltaic panels by integrating a spray cooling system with shallow geothermal energy heat exchanger’, Renew. Energy, 2019, 134, pp. 970981.
    42. 42)
      • 66. Lee, H.: ‘Thermal design’ (Wiley, Hoboken, NJ, 2013), p. 201.
    43. 43)
      • 21. Hasan, A., McCormack, S.J., Huang, M.J., et al: ‘Increased photovoltaic performance through temperature regulation by phase change materials: materials comparison in different climates’, Sol. Energy, 2015, 115, pp. 264276.
    44. 44)
      • 19. Rajaram, R., Sivakumar, D.B.: ‘Experimental investigation of solar panel cooling by the use of phase change material’. Proc. Int. Conf. on Energy Efficient Technologies for Automobiles, EETA'15, Curtin University, Malaysia, 2015, vol. 6.
    45. 45)
      • 62. Robinson, A.J., Kempers, R., Colenbrander, J., et al: ‘A single phase hybrid micro heat sink using impinging micro-jet arrays and microchannels’, Appl. Therm. Eng., 2018, 136, pp. 408418.
    46. 46)
      • 42. Wang, S.F.Y., Ding, G.F.: ‘Highly efficient manifold microchannel heatsink’, Electron. Lett., 2007, 43, (18), pp. 978980.
    47. 47)
      • 23. Huang, M.J., Eames, P.C., Norton, B.: ‘Thermal regulation of building-integrated photovoltaics using phase change materials’, Int. J. Heat Mass Transf., 2004, 47, (12–13), pp. 27152733.
    48. 48)
      • 59. Mahdavi, S., Sarhaddi, F., Hedayatizadeh, M.: ‘Energy/exergy based-evaluation of heating/cooling potential of PV/T and earth-air heat exchanger integration into a solar greenhouse’, Appl. Therm. Eng., 2019, 149, pp. 9961007.
    49. 49)
      • 12. Sato, D., Yamada, N.: ‘Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method’, Renew. Sustain. Energy Rev., 2019, 104, pp. 151166.
    50. 50)
      • 71. Alonso Garcia, M.C., Balenzategui, J.L. ‘Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculation’, Renew. Energy, 2004, 29, pp. 19972010.
    51. 51)
      • 4. Chaniotakis, E.: ‘Modelling and analysis of water cooled photovoltaics’. M.Sc. thesis, Faculty of Energy System and Environment, Department of Mechanical Engineering, University of Strathclyde, Glasgow, Scotland, 2001.
    52. 52)
      • 20. Hasan, A., McCormack, S.J.J., Huang, M.J.J., et al: ‘Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics’, Sol. Energy, 2010, 84, (9), pp. 16011612.
    53. 53)
      • 69. Townsend, T.U., KLein, S.A., Beckman, W.A.: ‘Simplified performance modelling of direct-coupled photovoltaic systems’. Proc. Annual Meeting ofAmerican Solar Energy Society, Inc. (USA), Denver, Colorado, USA., 1989.
    54. 54)
      • 5. Shahinzadeh, H., Najaf Abadi, M., Hajahmadi, M., et al: ‘Design and economic study for use the photovoltaic system for electricity supply in Isfahan Museum Park’, Int. J. Power Electron. Drive Syst., 2013, 3, (1), pp. 8394.
    55. 55)
      • 68. Soto, D.W., Klein, S.A., Beckman, W.A.: ‘Improvement and validation of a model for photovoltaic array performance’, Sol. Energy, 2006, 80, (1), pp. 7888.
    56. 56)
      • 10. Zubeer, S.A., Mohammed, H.A., Ilkan, M.: ‘A review of photovoltaic cells cooling techniques’. E3S Web of Conf., Wrocław, Poland, 2017, vol. 22, 00205.
    57. 57)
      • 37. Almahmoud, S., Jouhara, H.: ‘Experimental and theoretical investigation on a radiative flat heat pipe heat exchanger’, Energy, 2019, 174, pp. 972984.
    58. 58)
      • 33. Alizadeh, H., Ghasempour, R., Shafii, M.B., et al: ‘Numerical simulation of PV cooling by using single turn pulsating heat pipe’, Int. J. Heat Mass Transf., 2018, 127, (Part A), pp. 203208.
    59. 59)
      • 51. Martin, H.: ‘Heat and mass transfer between impinging gas jets and solid surfaces’, Adv. Heat Transf., 1977, 13, pp. 160.
    60. 60)
      • 65. Wei, Y., Jian, W., Liao, G.: ‘Grid-independent issue in numerical heat transfer’, 2006. Available at https://arxiv.org/ftp/math-ph/papers/0609/0609066.pdf.
    61. 61)
      • 46. Rahimi, M., Asadi, M., Karami, N., et al: ‘A comparative study on using single and multi header microchannels in a hybrid PV cell cooling’, Energy Convers. Manage., 2015, 101, pp. 18.
    62. 62)
      • 3. Moharram, K., Abd-Elhady, M., Kandil, H., et al: ‘Enhancing the performance of photovoltaic panels by water cooling’, Ain Shams Eng. J, 2013, 4, (4), pp. 869877.
    63. 63)
      • 48. Rahimi, M., Valeh-e-Sheyda, P., Parsamoghadam, M.A., et al: ‘Design of a self-adjusted jet impingement system for cooling of photovoltaic cells’, Energy Convers. Manage., 2014, 83, pp. 4857.
    64. 64)
      • 28. Zhu, L., Boehm, R.F., Wang, Y., et al: ‘Water immersion cooling of PV cells in a high concentration system’, Sol. Energy Mater. Sol. Cells, 2011, 95, (2), pp. 538545.
    65. 65)
      • 35. Fan, W., Kokogiannakis, G., Ma, Z.: ‘Optimisation of life cycle performance of a double-pass photovoltaic thermal–solar air heater with heat pipes’, Renew. Energy, 2019, 138, pp. 90105.
    66. 66)
      • 32. Sun, Y., Wang, Y., Zhu, L., et al: ‘Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver’, Energy, 2014, 65, pp. 264271.
    67. 67)
      • 24. Biwole, P.H., Eclache, P., Kuznik, F.: ‘Phase-change materials to improve solar panel's performance’, Energy Build., 2013, 62, pp. 5967.
    68. 68)
      • 31. Xiang, H., Wang, Y., Zhu, L., et al: ‘3D numerical simulation on heat transfer performance of a cylindrical liquid immersion solar receiver’, Energy Convers. Manage., 2012, 64, pp. 97105.
    69. 69)
      • 53. Yu, S.P., Jeong, S.D., Ping, H.Q., et al: ‘The study on the jet nozzle specified for solar PV power enhancement’. Report, Research Center of HILE-BEN Co. Ltd., 2011.
    70. 70)
      • 36. Hu, M., Zheng, R., Pei, G., et al: ‘Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe’, Appl. Therm. Eng., 2016, 106, pp. 651660.
    71. 71)
      • 64. Santbergen, R.: ‘Optical absorption factor of solar cells for PVT systemsTechnische Universiteit Eindhoven, Eindhoven, 2008ISBN: 978–90–386–1467–0.
    72. 72)
      • 70. Skoplaki, E., Palyvos, J.A.: ‘On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations’, Sol. Energy, 2009, 83, pp. 614624.
    73. 73)
      • 26. Mehrotra, S., Rawat, P., Debbarma, M., et al: ‘Performance of a solar panel with water immersion cooling technique’, Int. J. Sci. Environ. Technol., 2014, 3, (3), pp. 11611172.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.1042
Loading

Related content

content/journals/10.1049/iet-rpg.2019.1042
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading