Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multi-attribute analysis of micro-defect detection techniques suitable for automated production line of solar wafers and cells

Renewable energy is going to play an immensely important role in the coming decades. Hence, the bulk manufacturing of solar panels has seen a renewed interest. For this purpose, it is imperatively important to assess the techniques that can be employed on automated production lines for evaluating the quality of solar wafers and cells. To-date many non-destructive testing methods to access the micro-defects in solar wafers and cells have been developed around the globe; however, not all of them can be applied on a fast-paced production line. In this regard, this study details all the non-destructive evaluating techniques that can be employed on an automated production line. Using a multi-attribute decision-making method, a strategic evaluation procedure is developed that can be adopted for the optimum selection of evaluation tools currently available in the market. This study is aimed at young researchers, graduate students and practitioners who want to come up-to-speed regarding the various defects that occur in solar wafers and cells along with the techniques that are currently being adopted to evaluate those defects. Also, future trends in research are highlighted regarding the development of assessment techniques.

References

    1. 1)
      • 30. NPD Solarbuzz: ‘Multicrystalline silicon modules to dominate solar PV industry in 2014’. Available at http://www.solarbuzz.com/news/recent-findings/multicrystalline-silicon-modulesdominate-solar-pv-industry-2014, 2018.
    2. 2)
      • 117. Hilmersson, C., Hess, D.P., Dallas, W.: ‘Crack detection in single-crystalline silicon wafers using impact testing’, Appl. Acoust., 2008, 69, pp. 755760.
    3. 3)
      • 97. Schmidt, C., Altmann, F., Breitenstein, O.: ‘Application of lock-in thermography for failure analysis in integrated circuits using quantitative phase shift analysis’, Mater. Sci. Eng., 2012, 177, pp. 12611267, doi:10.1016/j.mseb.2012.02.011.
    4. 4)
      • 115. Belyaev, A., Polupan, O., Dallas, W., et al: ‘Crack detection and analyses using resonance ultrasonic vibrations in full-size crystalline silicon wafers’, Appl. Phys. Lett., 2006, 88, (11), pp. 111907111909, doi: 10.1063/1.2186393.
    5. 5)
      • 19. Perez, R., Gumbsch, P.: ‘Directional anisotropy in the cleavage fracture of silicon’, Phys. Rev. Lett., 2000, 84, (23), pp. 53475350.
    6. 6)
      • 21. Saffar, S., Gouttebroze, S., Zhang, L.Z.: ‘Stress and fracture analyses of solar silicon wafers during suction process and handling’, J. Sol. Energy Eng., 2015, 137, (3), pp. 347357, doi: 10.1115/1.4029451.
    7. 7)
      • 7. Akshat, R., David, Y.: ‘What Saudi Arabia's 200 GW solar power plant would look like – if placed in your neighborhood’. Available at https://qz.com/1240862/what-saudi-arabias-200-gw-solar-power-plant-would-look-like-from-space/, 1 April 2018.
    8. 8)
      • 140. QCell: Available at https://www.q-cells.com/en/main.html, 2018.
    9. 9)
      • 142. Mayyas, A., Shen, Q., Mayyas, A., et al: ‘Using quality function deployment and analytical hierarchy process for material selection of body-in-white’, Mater. Des., 2011, 32, pp. 27712782.
    10. 10)
      • 85. Tsai, T., Chang, C., Chao, S.: ‘Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion’, Image Vis. Comput., 2010, 28, (3), pp. 491501.
    11. 11)
      • 25. Hafiz, M.F., Kobayashi, T.: ‘Fracture toughness of eutectic Al–Si casting alloy with different microstructural features’, J. Mater. Sci., 1996, 31, pp. 61956200.
    12. 12)
      • 14. Schieferdecker, A., Sachse, J., Mueller, T., et al: ‘Material effects in manufacturing of silicon based solar cells and modules’, Phys. Status Solidi C, 2011, 8, (3), pp. 871874.
    13. 13)
      • 52. Breitenstein, O.: ‘Shunt types in crystalline silicon solar cells’, Prog. Photovolt. Res. Appl., 2004, 12, pp. 529538.
    14. 14)
      • 38. Larsson, H., Gustafsson, J., Solheim, J.H., et al: ‘The impact of saw damage etching on microcracks in solar cell production’. 23rd European Photovoltaics Solar Energy Conf., Valencia, Spain, 2008.
    15. 15)
      • 104. Byungguk, H., Hillmann, S., Schulze, M., et al: ‘Eddy current imaging for electrical characterization of silicon solar cells and TCO layers’. Proc. SPIE 9439, Smart Materials and Nondestructive Evaluation for Energy Systems, San Diego, California, United States of America, 2015, doi: 10.1117/12.2085302.
    16. 16)
      • 135. Hull, S.: ‘Detection of cracks in ceramics used in electronic devices using light scattering’, in Green, R.E., Kozaczek, K.J., Ruud, C.O. (Eds.): ‘Nondestructive characterization of materials VI’ (Springer, Boston, MA, USA, 1994), pp. 469477.
    17. 17)
      • 40. Behnken, H., Tiefers, H., Krühler, W., et al: ‘Influence of saw damage etching on the mechanical stability of multi-crystalline wafers’. 9th European Photovoltaic Solar Energy Conf., Paris, France, 2004.
    18. 18)
      • 73. Aghamohammadi, A.H., Prabuwono, S.A., Sahran, S., et al: ‘Solar cell panel crack detection using particle swarm optimization algorithm’. Int. Conf. Pattern Anal. Intell. Robot., Putrajaya, Malaysia, 28–29 June 2011, pp. 160164.
    19. 19)
      • 138. Teledyne Imaging: Available at https://teledynedalsa.com/en/learn/markets-and-applications/mv/solar-cell-inspection/, 2018.
    20. 20)
      • 33. Andrew, M.G., Rob, J., Andrew, A., et al: ‘Solar panel design factors to reduce the impact of cracked cells and the tendency for crack propagation’. NREL PV Module Reliability Workshop, Denver, CO, USA, 24 February 2015.
    21. 21)
      • 100. Trupke, T., Mitchell, B., Weber, J.W., et al: ‘Photoluminescence imaging for photovoltaic applications’. Int. Conf. on Materials for Advanced Technologies, Singapore, 2011, pp. 135146.
    22. 22)
      • 87. Ko, S., Liu, C., Lin, Y.: ‘Optical inspection system with tunable exposure unit for micro-crack detection in solar wafers’, Opt.-Int. J. Light Electron Opt., 2013, 124, pp. 40304035’. Available at http://dx.doi.org/10.1016/j.ijleo.2012.12.024.
    23. 23)
      • 81. Chiou, Y.C., Liu, J.Z., Liang, Y.T.: ‘Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques’, Sen. Rev., 2011, 31, (2), pp. 154165.
    24. 24)
      • 10. Zachary, S.: ‘What is the current cost of solar panels?’. Available at https://cleantechnica.com/2014/02/04/current-cost-solar-panels/, 04 February 2014.
    25. 25)
      • 99. Frühaufa, F., Wong, J., Bauer, J., et alFinite element simulation of inhomogeneous solar cells based on lock-in thermography and luminescence imaging’, Sol. Energy Mater. Sol. Cells, 2017, 162, pp. 103113. Available at http://dx.doi.org/10.1016/j.solmat.2016.12.037.
    26. 26)
      • 118. Belyaev, A., Polupan, O., Ostapenko, S., et al: ‘Resonance ultrasonic vibration diagnostics of elastic stress in full-size silicon wafers’, Semicond. Sci. Technol., 2006, 21, pp. 254260.
    27. 27)
      • 27. Kontges, M, Kunze, I, Kajari-Schroder, S.: ‘The risk of power loss in crystalline silicon based photovoltaic modules due to micro-cracks’. Solar Energy Mater. Sol. Cells, 2011, 95, pp. 11311137.
    28. 28)
      • 47. The GIY Life: ‘Do broken or cracked solar cells still work?Available at http://www.the-diy-life.com/do-broken-or-cracked-solar-cells-still-work/, 17 August 2016.
    29. 29)
      • 56. Shifeng, D., Zhang, Z., Ju, C., et al: ‘Research on hotspot risk for high-efficiency solar module’. SNEC 11th Int. Photovoltaic Power Generation Conf. and Exhibition (SNEC 2017 Scientific Conf.), Shanghai, China, 17–20 April 2017.
    30. 30)
      • 111. Nakanishi, H., Fujiwara, S., Takayama, K., et al: ‘Imaging of a polycrystalline silicon solar cell using a laser terahertz emission microscope’, Appl. Phys. Express, 2012, 5, pp. 112301.
    31. 31)
      • 114. Gustafsson, J., Larsson, H., Solheim, H.J.: ‘Mechanical stress tests on MC-Si wafers with micro-cracks’. Proc. of the 23rd European Photovoltaic Solar Energy Conf., Valencia, 2008, pp. 14.
    32. 32)
      • 5. Vivian, N., Stephen, C.: ‘Saudis, SoftBank plan world's largest solar project’. Available at https://www.bloomberg.com/news/articles/2018-03-28/saudi-arabia-softbank-ink-deal-on-200-billion-solar-project, 28 March 2018.
    33. 33)
      • 43. Wang, P.A.: ‘Industrial challenges for thin wafer manufacturing’. Proc. 4th World Conf. Photovoltaic Energy Conf. (PVEC), Waikoloa, HI, USA, 2006, pp. 11791182.
    34. 34)
      • 109. Mandelis, A., Zhang, Y., Melnikov, A.: ‘Statistical theory and applications of lock-in carrierographic image pixel brightness dependence on multi-crystalline Si solar cell efficiency and photovoltage’, J. Appl. Phys., 2012, 112, pp. 5456.
    35. 35)
      • 61. Saleem, M.: ‘Evaluating the pull-out load capacity of steel bolt using Schmid Hammer and ultrasonic pulse velocity test’, Struct. Eng. Mech. Int. J., 2018, 65, (5), pp. 601609. Available at https://doi.org/10.12989/sem.2018.65.5.601.
    36. 36)
      • 92. Breitenstein, O., Hilmar, S.: ‘Lock-in thermography investigation of solar modules’. 26th European Photovoltaic Solar Energy Conf. and Exhibition, Barcelona, Spain, 2011, pp. 14511453.
    37. 37)
      • 34. Maria, E.M.: ‘Crack analysis in silicon solar cells’ (University of South Florida, Tampa, USA, 2012).
    38. 38)
      • 29. Paggi, M., Berardone, I., Infuso, A., et al: ‘Fatigue degradation and electric recovery in silicon solar cells embedded in photovoltaic modules’, Sci. Rep., 2014, 4, pp. 45064512, Available at http://dx.doi.org/10.1038/srep04506.
    39. 39)
      • 82. Dutra, T.A., Pires, A.P., Bedrikovetsky, P.G.: ‘A new splitting scheme and existence of elliptic region for gasflood modelling’, SPE J., 2009, 14, pp. 101111.
    40. 40)
      • 57. Köntges, M., Kajari-Schröder, S., Kunze, I., et al: ‘Crack statistic of crystalline silicon photovoltaic modules’. Presented at the 26th European Photovoltaic Solar Energy Conf. Exhibition, Hamburg, Germany, 5–6 September 2011.
    41. 41)
      • 108. Yunze, H., Bolun, D., Shoudao, H.: ‘Non-contact electromagnetic induction excited infrared thermography for photovoltaic cells and modules inspection’, IEEE Trans. Ind. Inf., 2018, 22, pp. 19, doi: 10.1109/TII.2018.2822272.
    42. 42)
      • 37. Popovich, V.A., Yunus, A., Janssen, M., et al: ‘Effect of silicon solar cell processing parameters and crystallinity on mechanical strength’, Sol. Energy Mater. Sol. Cells, 2011, 95, (1), pp. 97100.
    43. 43)
      • 36. Kim, H., Sungeun, P., Kang, B.: ‘Effect of texturing process involving saw-damage etching on crystalline silicon solar cells’, Appl. Surf. Sci., 2013, 284, pp. 133137.
    44. 44)
      • 95. Rakotoniaina, J.P., Breitenstein, O., Al Rifai, M.H., et al: ‘Detection of cracks in silicon wafers and solar cells by lock-in ultrasound thermography’. Proc. PV Sol. Conf., Paris, France, 2004, pp. 640643.
    45. 45)
      • 24. Buehler, M.J., Tang, H., Adri, C.T., et al: ‘Threshold crack speed controls dynamical fracture of silicon single crystals’, Phys. Rev. Lett., 2007, 99, pp. 165502165505, doi: 10.1103/Phys-Rev Lett.99.165502.
    46. 46)
      • 63. Saleem, M.: ‘Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method’, Struct. Eng. Mech. Int. J., 2017, 64, (4), pp. 427436. Available at https://doi.org/10.12989/sem.2017.64.4.427.
    47. 47)
      • 39. Davis, K.O., Rodgers, M.P., Scardera, G.: ‘Manufacturing metrology for c-Si module reliability and durability part II: cell manufacturing’, Renew. Sustain. Energy Rev., 2016, 59, pp. 225252.
    48. 48)
      • 124. Fuyuki, T., Kondo, H., Yamazaki, T., et al: ‘Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence’, Appl. Phys. Lett., 2005, 86, (26), pp. 262108262110, doi: 10.1063/1.1978979.
    49. 49)
      • 42. Brun, X.F, Melkote, S.N.: ‘Analysis of stresses and breakage of crystalline silicon wafers during handling and transport’, Sol. Energy Mater. Sol. Cells, 2009, 93, pp. 12381247.
    50. 50)
      • 94. Breitenstein, O., Rakotoniaina, J.P., Kaes, M., et al: ‘Lock-in thermography - a universal tool for local analysis of solar cells’. 20th European Photovoltaic Solar Energy Conf., Barcelona, Spain, 2005.
    51. 51)
      • 72. Dafny Lydia, M.D., Sindhu, K., Gugan, K.: ‘Analysis on solar panel crack detection using optimization techniques’, J. Nano-Electron. Phys., 2017, 9, (2), pp. 02004-102004-6, paper ID 02004.
    52. 52)
      • 91. Breitenstein, O., Shen, C., Kampwerth, H., et al: ‘Comparison of DLIT- and PL based local solar cell efficiency analysis’, Energy Proc., 2013, 38, pp. 212.
    53. 53)
      • 32. Xianfang, G., Xiaoyan, L., Shaoliang, W., et al: ‘The effect of microcrack length in silicon cells on the potential induced degradation behavior’, Int. J. Photoenergy, 2018, 1, pp. 195202. Available at https://doi.org/10.1155/2018/4381579.
    54. 54)
      • 20. Lawn, B.: ‘Fracture in brittle solids’ (Cambridge University Press, Cambridge U.K., 1975, 2nd edn.).
    55. 55)
      • 116. Dallas, W., Polupan, O., Ostapenko, S.: ‘Resonance ultrasonic vibrations for crack detection in photovoltaic silicon wafers’, Meas. Sci. Technol., 2007, 18, pp. 852858.
    56. 56)
      • 123. Paul, F., Macro, P., Robyr, J., et al: ‘Lamb wave propagation in monocrystalline silicon wafers’, J. Acoust. Soc. Am., 2018, 143, (287), pp. 287295, Available at: https://doi.org/10.1121/1.5021256.
    57. 57)
      • 89. Simo, A., Martinuzzi, S.: Hot Spots and Heavily Dislocated Regions in Multicrystalline Silicon Cells, Proc. 21st IEEE Photovoltaic Specialist Conf. (PVSC), Kissimee, Florida, United States of America, 1990, pp. 800805, .
    58. 58)
      • 106. Vinod, P.N., Joseph, S., John, R.: ‘The detection and quantification of the defects in adhesive bonded joints of the piezoelectric sensors by infrared thermographic nondestructive testing’, Nondestructive Testing and Evaluation, 2016, pp. 115.
    59. 59)
      • 119. Ching, C.Y., Kuei, T.W.: ‘ESPI solution for defect detection in crystalline photovoltaic cells’. 7th Int. Symp. on Precision Engineering Measurements and Instrumentation, Lijian, Yunnan, China, 2011, vol. 8, no. 3, pp. 2139, doi: 10.1117/12.905261.
    60. 60)
      • 64. Israil, M., Kerm, A.G.Y.: ‘Non-destructive microcracks detection techniques in silicon solar cell’, Phys. Sci. Int. J., 2014, 4, (8), pp. 10731087.
    61. 61)
      • 132. Zeinab, M., Teo, W.T., Abdullah, M.Z.: ‘In-line optical micro-crack detection system for solar wafers’, Trans. Inst. Meas. Control, 2017, 39, (5), pp. 728737.
    62. 62)
      • 74. Rueland, E., Herguth, A., Trummer, A., et al: ‘Microcrack detection another optical characterization technique for in-line inspection of wafers and cells’. 20th Eur. Photovoltaic Solar Energy Conf., Barcelona, Spain, 2005, pp. 32423245.
    63. 63)
      • 127. Lin, W.J., Lei, Y.H., Huang, C.H.: ‘Automatic detection of internal defects in solar cells’. Proc. Instrum. Meas. Technol. Conf., Binjiang, China, 10–12 May 2011, pp. 14.
    64. 64)
      • 77. Hill, W.J., Norton-Wayne, L., Finkelstein, L.: ‘Signal processing for automatic optical surface inspection of steel strip’, Trans. Inst. Meas. Control, 1983, 5, pp. 137154.
    65. 65)
      • 107. Zenzinger, G., Bamberg, J., Satzger, W., et al: ‘Thermographic crack detection by eddy current excitation’, Nondestruct. Test. Eval., 2007, 22, (2-3), pp. 101111, doi: 10.1080/10589750701447920.
    66. 66)
      • 129. Chen, C.P.: ‘Analytical determination of critical crack size in solar cells’. Tech. Rep. NASA-CE-183128, NASA, Washington, DC, USA, April 1988.
    67. 67)
      • 50. Cook, I.: ‘Follow the thing: papaya’, Antipode, 2004, 36, (4), pp. 642664.
    68. 68)
      • 75. Farid, S., Ahmed, F.: ‘Application of Niblack's method on images’. Proc. of Int. Conf. on Emerging Technologies, Islamabad, 2009, pp. 280286.
    69. 69)
      • 84. Zhuang, F., Yanzheng, Z., Yang, L., et al: ‘Solar cell crack inspection by image processing’. Int. Business of Electronic Product Reliability and Liability Conf., Shanghai, China, 27–30 April 2004, pp. 7780.
    70. 70)
      • 31. SunPowerR Residential Solar Panels. Available at https://us.sunpower.com/home-solar/solar-cell-technology-solutions/, 2018.
    71. 71)
      • 88. Yang, W.: ‘Short-time discrete wavelet transform for wafer microcrack detection’. IEEE Int. Symp. Ind. Electronics, Seoul, Korea, 5–8 July 2009, pp. 20692074.
    72. 72)
      • 128. Trupke, T., Bardos, R.A., Schubert, M.C., et al: ‘Photoluminescence imaging of silicon wafers’, Appl. Phys. Lett., 2006, 89, (4), pp. 044107044107-3.
    73. 73)
      • 143. Qattawi, A., Mayyas, A., Abdelhamid, M., et al: ‘Incorporating quality function deployment and analytical hierarchy process in a knowledge-based system for automotive production line design’, Int. J. Comput. Integr. Manuf., 2013, 26, (9), pp. 839856.
    74. 74)
      • 53. Dongaonkar, S., Servaites, J.D., Ford, G.M., et al: ‘Universality of non-ohmic shunt leakage in thin-film solar cell’, J. Appl. Phys., 2010, 108, (12), pp. 124509124510.
    75. 75)
      • 122. Padiyar, M.J., Chakrapani, S.K., Krishnamurthy, C.V., et al: ‘Crack detection in polycrystalline silicon wafers using air-coupled ultrasonic guided waves’. Proc. National Seminar Exhibition Non-Destructive Evaluation, Tiruchirappalli, India, 10–12 December 2009, pp. 341345.
    76. 76)
      • 80. Xiaoliang, Q., Heqing, Z., Huanlong, Z., et al: ‘Solar cell surface defects detection based on computer vision’, Int. J. Performabil. Eng., 2017, 13, (7), pp. 10481056.
    77. 77)
      • 55. Systems Inc, F.L.I.R.: ‘Thermal imaging cameras: a fast and reliable tool for testing solar panels’. Retrieved September 2018. Available at http://www.flir.com/cs/emea/en/view/?id=41872.
    78. 78)
      • 110. Liu, J., Melnikov, A., Mandelis, A.: ‘Silicon solar cell electrical parameter measurements through quantitative lock-in carrierographic (photoluminescence) and thermographic imaging’, Phys. Status Solidi, 2013, 201, pp. 21352145.
    79. 79)
      • 105. Wang, Y., Ke, H., Shi, J., et al: ‘Impact damage detection and characterization using eddy current pulsed thermography’. IEEE Far East Forum on Nondestructive Evaluation/Testing, Nanchang, China, 2016.
    80. 80)
      • 126. Jean, J., Chen, C., Lin, H.: ‘Application of an image processing software tool to crack inspection of crystalline silicon solar cells’. Presented at the 2011 Int. Conf. Machine Learning and Cybernetics, Guilin, China, July 2011.
    81. 81)
      • 28. Claudia, B., Mariacristina, G., Marco, P.: ‘Fatigue crack growth in silicon solar cells and hysteretic behaviour of busbars’, Sol. Energy Mater. Sol. Cells, 2018, 181, pp. 2129.
    82. 82)
      • 121. Chakrapani, S.K., Padiyar, M.J., Balasubramaniam, K.: ‘Crack detection in full size CZ-silicon wafers using Lambwave air coupled ultrasonic testing (LAC-UT)’, J. Nondestructive Eval., 2012, 31, pp. 4655.
    83. 83)
      • 112. Salek, K.A., Nakanishi, H., Ito, A., et al: ‘Laser terahertz emission microscopy studies of a polysilicon solar cell under the illumination of continuous laser light’, Opt. Eng., 2014, 53, pp. 312.
    84. 84)
      • 76. Otsu, N.: ‘A threshold selection method from graylevel histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, pp. 6266.
    85. 85)
      • 67. Bajaj, J., Bubulac, L.O., Newman, P.R.: ‘Spatial mapping of electrically active defects in HgCdTe using laser beam induced current by scanning laser microscopy’, Semicond. Sci. Technol., 1993, 5, pp. 31863189.
    86. 86)
      • 8. David, F.: ‘Softbank vision fund, Saudi Arabia to create world's biggest solar power firm’. Available at https://www.reuters.com/article/us-saudi-softbank-group/softbank-vision-fund-saudi-arabia-to-create-worlds-biggest-solar-power-firm-idUSKBN1H40DN, 28 March 2018.
    87. 87)
      • 3. Enerdata: ‘Global energy statistical yearbook’. Available at https://yearbook.enerdata.net/electricity/world-electricity-production-statistics.html, 24 September 2018.
    88. 88)
      • 90. Breitenstein, O.: ‘Illuminated versus dark lock-in thermography investigations of solar cells’, Int. J. Nanoparticles, 2013, 6, (2/3), pp. 8192.
    89. 89)
      • 83. Liu, L., Sclaroff, S.: ‘Deformable model-guided region split and merge of image regions’, Image Vis. Comput., 2004, 22, pp. 343354.
    90. 90)
      • 23. Ranjana, S., Sasi, K., Vincent, A., et al: ‘Fracture mechanics and testing of interface adhesion strength in multilayered structures – application in advanced solar PV materials and technology’. Procedia Engineering, Int. Conf. on Materials for Advanced Technologies (ICMAT2015), Symp. C – Solar PV (Photovoltaics) Materials, Manufacturing and Reliability, Singapore, 2016, vol. 139, no. 23, pp. 4755. Available at https://doi.org/10.1016/j.proeng.2015.09.232.
    91. 91)
      • 59. Coletti, G., Borg, V.D., Iuliis, S.D., et al: ‘Mechanical strength of silicon wafers depending on wafer thickness and surface treatment’. 21st European Photovoltaic Solar Energy Conf. Exhibition, Dresden, Germany, 4–8 September 2006.
    92. 92)
      • 93. Breitenstein, O., Langenkamp, M.: ‘Lock-in thermography – basics and use for functional diagnostics of electronic components’ (Springer, Berlin, Germany, 2003).
    93. 93)
      • 60. Ni, C., Dong, L., Shen, Z., et al: ‘The experimental study of fatigue crack detection using scanning laser point source technique’, Opt. Laser Technol., 2011, 43, (8), pp. 13911397.
    94. 94)
      • 137. Ortner, A., Gräff, O., Stelzl, M., et al: ‘Edge-light: combination of sensitive crack detection and luminescence measurements’, Prog. Photovolt., Res. Appl., 2013, 21, (6), pp. 13431353.
    95. 95)
      • 141. AZO Optics: Available at https://www.azooptics.com, 2018.
    96. 96)
      • 2. Williams, R.: ‘Becquerel photovoltaic effect in binary compounds’, J. Chem. Phys., 1960, 32, (5), pp. 15051514.
    97. 97)
      • 13. Wansleben, S.: ‘Not falling through the crack’. Available at http://www.pv-magazine.com/archive/articles/beitrag/not-falling-through-the-cracks100002343/#ixzz2XlDuI4Bt, March 2011.
    98. 98)
      • 35. Rantala, J., Wu, D., Salerno, A., et al: ‘Lock-in thermography with mechanical loss angle heating at ultrasonic frequencies’, NDT.Net, 1997, 2, (3), pp. 389393.
    99. 99)
      • 136. Trautmann, M., Hemsendorf, M., Berge, C., et al: ‘Non-contact microcrack detection from as-cut wafer to finished solar’. Proc. 38th IEEE Photovoltaic Specialist Conf., Austin, Texas, United States of America, 2012, pp. 485488.
    100. 100)
      • 96. Breitenstein, O., Altmann, F.S.C., Karg, D.: ‘Thermal failure analysis by IR lock-in thermography’, ‘Microelectronics failure analysis’, in Richards, F. (Eds.): (ASM International, Cleveland, USA, 2011), pp. 330339.
    101. 101)
      • 9. Farhad, T., Naoyuki, Y., Yugo, I: ‘What are the reasons behind the decrease in solar module prices?’. Available at https://www.asiapathways-adbi.org/2018/06/what-are-the-reasons-behind-the-decrease-in-solar-module-prices/, 25 June 2018.
    102. 102)
      • 18. Jiahao, C.: ‘Evaluating thermal imaging for identification and characterization of solar cell defects’ (Iowa State University, Ames, USA, 2014).
    103. 103)
      • 51. Gregson, N., Crang, M., Ahamed, F., et al: ‘Following things of rubbish value: end-of-life ships, ‘chock-chocky’ furniture and the Bangladeshi middle class consumer’, Geoforum, 2010, 41, (6), pp. 846854.
    104. 104)
      • 113. Murakami, H., Tonouchi, M.: ‘Laser terahertz emission microscopy’, Proc. IEEE, 2015, 95, pp. 16461657.
    105. 105)
      • 16. Mahmoud, A., Rajendra, S., Omar, M.: ‘Review of microcrack detection techniques for silicon solar cells’, IEEE J. Photovolt., 2014, 4, (1), pp. 514524.
    106. 106)
      • 12. Rupnowski, P., Sopori, B.: ‘Strength of silicon wafers: fracture mechanics approach’, Int. J. Fract., 2009, 155, (1), pp. 6774.
    107. 107)
      • 98. Bauer, J., Leonard, A., Wägele, K.G., et al: ‘Pseudo shunts interfering lock-in thermography investigations of solar cells: characterization and prevention’, IEEE J. Photovolt., 2014, 121, pp. 14291431.
    108. 108)
      • 62. Saleem, M., Nasir, M.: ‘Bond evaluation of concrete bolts subjected to impact loading’, J. Mater. Struct., 2016, 49, (9), pp. 36353646. Available at https://doi.org/10.1617/s11527-015-0745-9.
    109. 109)
      • 130. Anderson, T.L.: ‘Fracture mechanics: fundamentals and applications’ (Taylor & Francis, New York, NY, USA, 2005, 3rd edn.).
    110. 110)
      • 45. Popovich, V.A., Janssen, I., Bennett, J., et al: ‘Breakage issues in silicon solar wafers and cells’, (Energy Research Centre of the Netherlands (ECN), Petten, the Netherlands, 2011).
    111. 111)
      • 4. DiChristopher, T.: ‘Softbank and Saudi Arabia are creating world's biggest solar power generation project’. Available at https://www.cnbc.com/2018/03/27/softbank-and-saudi-arabia-announce-new-solar-power-generation-project.html, 27 March 2018.
    112. 112)
      • 125. Breitenstein, O., Bauer, J., Bothe, K., et al: ‘Can luminescence imaging replace lockin thermography on solar cells’, IEEE J. Photovolt., 2011, 1, (2), pp. 159167.
    113. 113)
      • 26. Chasiotis, I., Cho, S.W., Jonnalagadda, K.: ‘Fracture toughness and subcritical crack growth in polycrystalline silicon’, J. Appl. Mech., 2006, 73, pp. 714722.
    114. 114)
      • 133. Liu, Z., Sarah, W., Loewen, K.C., et al: ‘Design of a submillimeter crack-detection tool for Si photovoltaic wafers using vicinal illumination and dark-field scattering’, IEEE J. Photovoltics, 2018, 8, (6), pp. 14491456.
    115. 115)
      • 131. Teo, W.T., Zeinab, M., Abdullah, M.Z.: ‘Design of an imaging system for characterizing microcracks in crystalline silicon solar cells using light transflection’, IEEE J. Photovoltics, 2019, 9, (4), pp. 10971104.
    116. 116)
      • 65. Bolun, D., Yang, R., Yunze, H., et al: ‘Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: an overview’, Renew. Sustain. Energy Rev., 2017, 78, pp. 11171151.
    117. 117)
      • 15. Israil, M., Anwar, S.A., Abdullah, M.Z.: ‘Automatic detection of micro-crack in solar wafers and cells: a review’, Trans. Inst. Meas. Control, 2013, 35, (5), pp. 606618.
    118. 118)
      • 58. Song, M.K., Jhang, Y.K.: ‘Crack detection in single-crystalline silicon wafer using laser generated lamb wave’, Adv. Mater. Sci. Eng., 2013, 2013, 6p. Article ID: 950791. Available at http://dx.doi.org/10.1155/2013/950791.
    119. 119)
      • 17. Zhang, L., Ciftja, A.: ‘Recycling of solar cell silicon scraps through filtration’, part I: experimental investigation’, Sol. Energy Mater. Sol. Cells, 2008, 92, pp. 14501461.
    120. 120)
      • 54. Wohlgemuth, J., Herrmann, W.: ‘Hot spot tests for crystalline silicon modules’. Proc. IEEE 31st Photovoltaic Specialists Conf. Record, Florida, United States of America, 3–7 January 2005, pp. 10621063.
    121. 121)
      • 6. Al-Arabiya: ‘Everything you need to know about the Saudi-SoftBank solar power project’. Available at https://www.youtube.com/watch?v=NjfVrcq9v4g, 28 March 2018.
    122. 122)
      • 79. Mehnert, A., Jackway, P.: ‘An improved seeded region growing algorithm’, Pattern Recognit. Lett., 1997, 18, pp. 10651071.
    123. 123)
      • 22. Hauch, J., Holland, D., Marder, M.P., et al: ‘Dynamic fracture in single crystal silicon’, Phys. Rev. Lett., 1999, 82, (19), pp. 38233826.
    124. 124)
      • 86. Qian, X.L., Zhang, H.Q., Zhang, H.L., et al: ‘Solar cells surface defect detection based on visual saliency’, Chin. J. Sci. Instrum., 2017, 38, (7), pp. 15701578.
    125. 125)
      • 11. Zimmermann, C.G.: ‘The impact of mechanical defects on the reliability of solar cells in aerospace applications. IEEE Trans. Device Mater. Reliab., 2006, 6, pp. 486494.
    126. 126)
      • 102. Netzelmann, U, Walle, G.: ‘Induction thermography as a tool for reliable detection of surface defects in forged components’. World Conf. on Non-Destructive Testing (WCNDT), Shanghai, China, 2008.
    127. 127)
      • 71. Mazer, J.A.: ‘Solar cell: an introduction to crystalline photovoltaic technology’ (Kluwer Academic, Boston, MA, 1996).
    128. 128)
      • 78. Adams, R., Bischof, L.: ‘Seeded region growing’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, pp. 641647.
    129. 129)
      • 70. Agostinelli, G., Friesen, G., Merli, F.: ‘Large area fast LBIC as a tool for inline PV module string characterization’. Proc. of the 17th European Photovoltaic Solar Energy Conf., Munich, 2001, pp. 410413.
    130. 130)
      • 68. Bajaj, J., Tennant, W.E.: ‘Remote contact LBIC imaging of defects in semiconductors’, J. Cryst. Growth, 1999, 103, pp. 170178.
    131. 131)
      • 1. British Petroleum: ‘Solar energy’. Available at https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/renewable-energy/solar-energy.html, 24 September 2018.
    132. 132)
      • 41. Schneider, A., Bühler, G., Huster, F., et al: ‘Impact of individual process steps on the stability of silicon solar cells studied with a simple mechanical stability tester’. PV in Europe from PV Technology to Energy Solutions Conf., Rome, Italy, 2002.
    133. 133)
      • 48. ASTM Standard C 1341-06: ‘Standard test method for flexural properties of continuous fiber reinforced advanced ceramic composites’ (ASTM International, West Conshohocken, Pennsylvania, USA, 2006).
    134. 134)
      • 69. Thantsha, N.M., Macabebe, E.Q.B., Vorster, F.J.: ‘Opto-electronic analysis of silicon cell by LBIC investigations and current–voltage characterization’, Physica B, 2009, 404, pp. 44454448.
    135. 135)
      • 49. Jamie, C., Murray, D.: ‘The afterlives of solar power: waste and repair off the grid in Kenya’, Energy Res. Soc. Sci., 2018, 44, pp. 100109.
    136. 136)
      • 46. Abdul, T.B., Hameed, M.: ‘The wafer breakages reduction using kaizen approach’. Proc. of the 2014 Int. Conf. on Industrial Engineering and Operations Management, Bali, Indonesia, 7–9 January 2014.
    137. 137)
      • 44. Dragišić, V.T.: ‘Silicon solar wafers: quality control and improving the mechanical properties’. Procedia Engineering, Int. Scientific Conf. Urban Civil Engineering and Municipal Facilities (SPbUCEMF-2015), St. Petersburg, Russia, 2015, vol. 117, pp. 459464.
    138. 138)
      • 101. Kasemann, M., Kwapil, W., Walter, B., et al: ‘Progress in silicon solar cell characterization with infrared imaging methods’. 23rd European Photovoltaic Solar Energy Conf. and Exhibition, Valencia, Spain, 2008, pp. 965973.
    139. 139)
      • 120. Wen, T., Yin, C.: ‘Crack detection in photovoltaic cells by interferometric analysis of electronic speckle patterns’, J. Sol. Energy Mater. Sol. Cells, 2012, 98, pp. 216223.
    140. 140)
      • 103. Netzelmann, U, Walle, G, Lugin, S, et al: ‘Induction thermography: principle, applications and first steps towards standardization’, Quant. Infrared. Thermogr. J., 2006, 13, (2), pp. 170181, Available at https://doi.org/10.1080/17686733.2016.1145842.
    141. 141)
      • 134. Wieghold, S., Morishige, A.E., Meyer, L., et al: ‘Crack detection in crystalline silicon solar cells using dark-field imaging’, Energy Proc., 2017, 124, pp. 526531.
    142. 142)
      • 66. Li, B., Xianghao, H., Shuai, F.: ‘Automatic inspection of surface crack in solar cell images’. Chinese Control Decision Conf., Northeastern University, China, 2011, pp. 993998.
    143. 143)
      • 139. BT Imaging: Available at http://www.btimaging.com/, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0904
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0904
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address