http://iet.metastore.ingenta.com
1887

access icon free Active power dispatch strategy of the wind farm based on improved multi-agent consistency algorithm

Loading full text...

Full text loading...

/deliver/fulltext/iet-rpg/13/14/IET-RPG.2019.0900.html;jsessionid=1x3uj72s9pfep.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-rpg.2019.0900&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. World Wind Energy Association (WWEA): ‘2014 half-year report’. Available at http://www.wwindea.org/webimages/WWEA_half_year_report_2014.pdf, accessed 28 February 2015.
    2. 2)
      • 2. Xiao, C.: ‘European and American wind power development experience and enlightenment’ (China Electric Power Press, Beijing, 2010).
    3. 3)
      • 3. Liu, J.Z., Liu, Y., Zeng, D.L., et al: ‘Optimal short-term load dispatch strategy in wind farm’, Sci China Tech. Sci., 2012, 55, (4), pp. 11401145.
    4. 4)
      • 4. Zhao, X., Liu, S., Yan, F., et al: ‘Energy conservation, environmental and economic value of the wind power priority dispatch in China’, Renew. Energy, 2017, 111, pp. 666675.
    5. 5)
      • 5. Chen, J., Wu, W., Zhang, B., et al: ‘An active power real-time control method for large power grid under wind power curtailment’, Proc. CSEE, 2012, 32, (28), pp. 16.
    6. 6)
      • 6. Jin, J., Zhou, D., Zhou, P., et al: ‘Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system’, Energy, 2016, 106, pp. 453463.
    7. 7)
      • 7. Tarca, S., Roughan, M., Ertugrul, N., et al: ‘Dispatchability of wind power with battery energy storage in south Australia’, Energy Proc., 2017, 110, pp. 223228.
    8. 8)
      • 8. Merahi, F., Berkouk, E.M., Mekhilef, S.: ‘New management structure of active and reactive power of a large wind farm based on multilevel converter’, Renew. Energy, 2014, 68, pp. 814828.
    9. 9)
      • 9. Ebrahimi, F.M., Khayatiyan, A., Farjah, E.: ‘A novel optimizing power control strategy for centralized wind farm control system’, Renew. Energy, 2015, 86, pp. 399408.
    10. 10)
      • 10. Xu, J., Yi, X., Sun, Y., et al: ‘Stochastic optimal scheduling based on scenario analysis for wind farms’, IEEE Trans. Sustain. Energy, 2017, 8, (4), pp. 15481559.
    11. 11)
      • 11. Zhao, H., Wu, Q., Huang, S., et al: ‘Fatigue load sensitivity-based optimal active power dispatch for wind farms’, IEEE Trans. Sustain. Energy, 2017, 8, (3), pp. 12471259.
    12. 12)
      • 12. Zhang, J.H., Liu, Y.Q., Tian, D., et al: ‘Optimal power dispatch in wind farm based on reduced blade damage and generator losses’, Renew. Sustain. Energy Rev., 2015, 44, (44), pp. 6477.
    13. 13)
      • 13. Zhang, B., Soltani, M., Hu, W., et al: ‘Optimized power dispatch in wind farms for power maximizing considering fatigue loads’, IEEE Trans. Sustain. Energy, 2018, 9, (2), pp. 862871.
    14. 14)
      • 14. Zhang, J., Liu, Y., Infield, D., et al: ‘Optimal power dispatch within wind farm based on two approaches to wind turbine classification’, Renew. Energy, 2017, 102, pp. 487501.
    15. 15)
      • 15. Knudsen, T., Bak, T., Svenstrup, M.: ‘Survey of wind farm control – power and fatigue optimization’, Wind Energy, 2015, 18, (8), pp. 13331351.
    16. 16)
      • 16. Madjidian, D., Rantzer, A.: ‘A distributed coordination scheme for fatigue load minimization in wind farms’. American Control Conf. 2011, San Francisco, California, USA, 2011, pp. 52195224.
    17. 17)
      • 17. Knudsen, T., Bak, T., Soltani, M.: ‘Distributed control of large-scale offshore wind farms’. European Wind Energy Conf. and Exhibition (EWEC) 2009. European Wind Energy Association (EWEA), Parc Chanot, Marseille, France, 16–19 March 2009.
    18. 18)
      • 18. Zhang, Z., Chow, M.Y.: ‘Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 17611768.
    19. 19)
      • 19. Pengpeng, L., Zhao, J., Duanchao, L.I., et al: ‘A consensus-based collaborative algorithm for real time dispatch of island microgrid in cyber physical system’, Proc. CSEE, 2016, 36, (6), pp. 14711480.
    20. 20)
      • 20. Xu, Y., Li, Z.: ‘Distributed optimal resource management based on the consensus algorithm in a microgrid’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25842592.
    21. 21)
      • 21. Zhang, W., Xu, Y., Liu, W., et al: ‘Fully distributed coordination of multiple DFIGs in a microgrid for load sharing’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 806815.
    22. 22)
      • 22. Wang, L., Wen, J., Cai, M., et al: ‘Distributed optimization control schemes applied on offshore wind farm active power regulation’, Energy Proc., 2017, 105, pp. 11901198.
    23. 23)
      • 23. Baros, S., Ilić, M.D.: ‘Distributed torque control of deloaded wind DFIGs for wind farm power output regulation’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 45904599.
    24. 24)
      • 24. Fernando, D.B., Hernán, B., Ricardo, J.M.: ‘Wind turbine control systems: principles, modelling and gain dispatch design (advances in industrial control)’, 2006.
    25. 25)
      • 25. Chichester, S.H.: ‘Grid integration of wind energy conversion systems’ (Wiley, New York, NY, USA, 1999), 385p.
    26. 26)
      • 26. Chen, N., Wang, Q., Tang, Y., et al: ‘An optimal active power control method of wind farm using power prediction information’. 2012 IEEE Int. Conf. on Power System Technology (POWERCON), New Zealand, 2012, pp. 15.
    27. 27)
      • 27. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    28. 28)
      • 28. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, UK, 1985).
    29. 29)
      • 29. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, (1), pp. 215233.
    30. 30)
      • 30. Valldecabres, L., Nygaard, N.G., von Bremen, L., et al: ‘Very short-term probabilistic forecasting of wind power based on dual-Doppler radar measurements in the north sea’, J. Phys., Conf. Ser., 2018, 1037, (5), p. 052010.
    31. 31)
      • 31. Hong, D.Y., Ji, T.Y., Li, M.S., et al: ‘Ultra-short-term forecast of wind speed and wind power based on morphological high frequency filter and double similarity search algorithm’, Int. J. Electr. Power Energy Syst., 2019, 104, pp. 868879.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0900
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0900
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address