Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Secondary-control-based harmonics compensation scheme for voltage- and current-controlled inverters in islanded microgrids

In this study, a coordinated control scheme is proposed for sharing harmonics compensation effort among voltage and current controlled mode (VCM and CCM) inverters in islanded microgrids. In this method, the voltage harmonics compensation of sensitive bus (SB) is achieved by using secondary control as well as virtual impedance and admittance loops in primary control of VCM and CCM units. The limited capacity of the inverter is taken into account for harmonics compensation. Photovoltaic (PV) systems are considered as CCM units. The harmonics compensation is mainly performed by VCM inverters. However, in order to prevent these units from overloading, the PV interfacing inverters (CCM units) are called to collaborate in harmonics compensation whenever needed. The results of simulation study in Matlab/Simulink show the effectiveness of this method in coordination of CCM and VCM units.

References

    1. 1)
      • 21. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control for voltage quality enhancement in microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18931902.
    2. 2)
      • 5. Azghandi, A., Barakati, S.M., Wu, B.: ‘Dynamic modeling and control of grid-connected photovoltaic systems based on amplitude-phase transformation’, Iranian J. Electr. Electron. Eng., 2018, 14, (4), pp. 342352.
    3. 3)
      • 36. Eldeeb, H., Massoud, A., Abdel-Khalik, A.S., et al: ‘A sensorless kalman filter-based active damping technique for grid-tied VSI with LCL filter’, Int. J. Electr. Power Energy Syst., 2017, 93, pp. 146155.
    4. 4)
      • 12. Savaghebi, M, Shafiee, Q., Vasquez, J.C., et al: ‘Adaptive virtual impedance scheme for selective compensation of voltage unbalance and harmonics in microgrids’. IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 15.
    5. 5)
      • 31. Zeng, Z., Zhao, R., Yang, H.: ‘Coordinated control of multi-functional grid-tied inverters using conductance a susceptance limitation’, IET Power Electron., 2014, 7, (7), pp. 18211831.
    6. 6)
      • 7. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    7. 7)
      • 8. Wu, D., Tang, F., Dragicevic, T., et al: ‘A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11561166.
    8. 8)
      • 9. Serban, I., Marinescu, C.: ‘Control strategy of three-phase battery energy storage systems for frequency support in microgrids and with uninterrupted supply of local loads’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 50105020.
    9. 9)
      • 26. Todeschini, G., Emanuel, A.E.: ‘Wind energy conversion systems as active filters: design and comparison of three control methods’, IET Renew. Power Gener., 2010, 4, (4), pp. 341353.
    10. 10)
      • 24. Hashempour, M.M., Lee, T., Savaghebi, M., et al: ‘Real-time supervisory control for power quality improvement of multi-area microgrids’, IEEE Syst. J., 2019, 13, (1), pp. 864874.
    11. 11)
      • 25. Naderi, Y., Hosseini, S.H., Ghassem Zadeh, S., et al: ‘An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks’, Renew. Sust. Energy Rev., 2018, 93, pp. 201214.
    12. 12)
      • 33. Mousazadeh Mousavi, S.Y., Jalilian, A., Savaghebi, M., et al: ‘Autonomous control of current and voltage controlled DG interface inverters for reactive power sharing and harmonics compensation in islanded microgrids’, IEEE Trans. Power Electr., 2018, 33, (11), pp. 93759386.
    13. 13)
      • 23. Hashempour, M.M., Savaghebi, M., Vasquez, J.C., et al: ‘Voltage unbalance and harmonic compensation in microgrids by cooperation of distributed generators and active power filters’. 2016 7th Power Electronics and Drive Systems Technologies Conf. (PEDSTC), Tehran, 2016, pp. 646651.
    14. 14)
      • 40. Kamarzaman, N.A., Tan, C.W.: ‘A comprehensive review of maximum power point tracking algorithms for photovoltaic systems’, Renew. Sust. Energy Rev., 2014, 37, pp. 585598.
    15. 15)
      • 20. Wang, X., Guerrero, J. M., Blaabjerg, F., et al: ‘Secondary voltage control for harmonics suppression in islanded microgrids’. 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, 2011, pp. 18.
    16. 16)
      • 11. Mousazadeh Mousavi, S.Y., Jalilian, A., Savaghebi, M., et al: ‘Flexible compensation of voltage and current unbalance and harmonics in microgrids’, Energies, 2017, 10, p. 1568.
    17. 17)
      • 13. Wang, X., Blaabjerg, F., Chen, Z.: ‘Synthesis of variable harmonic impedance in inverter-interfaced distributed generation unit for harmonic resonance damping throughout a distribution network’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 14071417.
    18. 18)
      • 10. Hajizadeh, A., Golkar, M.A.: ‘Fuzzy neural control of a hybrid fuel cell/ battery distributed power generation system’, IET Renew. Power Gener., 2009, 3, (4), pp. 402414.
    19. 19)
      • 3. Arzani, A., Venayagamoorthy, G.K.: ‘Computational approach to enhance performance of photovoltaic system inverters interfaced to utility grids’, IET Renew. Power Gener., 2018, 12, pp. 112124.
    20. 20)
      • 28. Mousazadeh Mousavi, S.Y., Jalilian, A., Savaghebi, M., et al: ‘Power quality enhancement and power management of a multifunctional interfacing inverter for PV and battery energy storage system’, Int. Trans. Electr. Energy Syst., 2018, 28, (12), p. e2643.
    21. 21)
      • 41. Podder, A.K., Roy, N.K., Roy, H.P.: ‘MPPT methods for solar PV systems: a critical review based on tracking nature’, IET Renew. Power Gener., 2019, 13, (10), pp. 16151632.
    22. 22)
      • 1. Maza Ortega, J.M., Gomez Exposito, A., Barragan Villarejo, M., et al: ‘Voltage source converter-based topologies to further integrate renewable energy sources in distribution systems’, IET Renew. Power Gener., 2012, 6, (6), pp. 435445.
    23. 23)
      • 6. Zeng, Z., Li, X., Shao, W.: ‘Multi-functional grid-connected inverter: upgrading distributed generator with ancillary services’, IET Renew. Power Gener., 2018, 12, (7), pp. 797805.
    24. 24)
      • 29. Noroozian, R., Gharehpetian, G.B.: ‘An investigation on combined operation of active power filter with photovoltaic arrays’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 392399.
    25. 25)
      • 15. Wang, X., Blaabjerg, F., Chen, Z.: ‘Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 452461.
    26. 26)
      • 22. Hashempour, M.M., Savaghebi, M., Vasquez, J.C., et al: ‘A control architecture to coordinate distributed generators and active power filters coexisting in a microgrid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23252336.
    27. 27)
      • 39. Villalva, M.G., Gazoli, J.R., Filho, E.R.: ‘Comprehensive approach to modeling and simulation of photovoltaic arrays’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 11981208.
    28. 28)
      • 2. Blaabjerg, F., Chen, S.Z., Kjaer, B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194.
    29. 29)
      • 30. Mousazadeh Mousavi, S.Y., Jalilian, A., Savaghebi, M., et al: ‘Coordinated control of multifunctional inverters for voltage support and harmonic compensation in a grid-connected microgrid’, Electr. Power Syst. Res., 2018, 155, pp. 254264.
    30. 30)
      • 34. Zhao, X., Meng, L., Xie, C., et al: ‘A unified voltage harmonic control strategy for coordinated compensation with VCM and CCM converters’, IEEE Trans. Power Electr., 2018, 33, (8), pp. 71327147.
    31. 31)
      • 17. Savaghebi, M., Vasquez, J.C., Jalilian, A., et al: ‘Selective compensation of voltage harmonics in grid-connected microgrids’, Math. Comput. Simul., 2013, 91, pp. 211228.
    32. 32)
      • 38. Ben Saïd-Romdhane, M., Naouar, M.W., Slama-Belkhodja, I., et al: ‘Time delay consideration for robust capacitor-current-inner-loop active damping of LCL-filter-based grid-connected converters’, Int. J. Electr. Power Energy Syst., 2018, 95, pp. 177187.
    33. 33)
      • 32. Blanco, C., Reigosa, D., Vasquez, J.C., et al: ‘Virtual admittance loop for voltage harmonic compensation in microgrids’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 33483356.
    34. 34)
      • 19. Meng, L., Zhao, X., Tang, F., et al: ‘Distributed voltage unbalance compensation in islanded microgrids by using a dynamic consensus algorithm’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 827838.
    35. 35)
      • 4. Adefarati, T., Bansal, R.C.: ‘Integration of renewable distributed generators into the distribution system: a review’, IET Renew. Power Gener., 2016, 10, (7), pp. 873884.
    36. 36)
      • 14. Micallef, A., Apap, M., Spiteri-Staines, C., et al: ‘Mitigation of harmonics in grid-connected and islanded microgrids via virtual admittances and impedances’, IEEE Trans. Smart Grid, 2017, 8, (2), pp. 651661.
    37. 37)
      • 18. Savaghebi, M., Jalilian, A., Vasquez, J.C., et al: ‘Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    38. 38)
      • 16. Ghanizdeh, R., Gharehpetian, G.B.: ‘Voltage quality and load sharing improvement in islanded microgrids using distributed hierarchical control’, IET Renew. Power Gener., 2019, 13, (15), pp. 28882898.
    39. 39)
      • 27. Zeng, Z., Yang, H., Guerrero, J.M., et al: ‘Multi-functional distributed generation unit for power quality enhancement’, IET Power Electron., 2015, 8, (3), pp. 467476.
    40. 40)
      • 35. Loh, P.C., Holmes, D.G.: ‘Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters’, IEEE Trans Ind. Appl., 2005, 41, (2), pp. 644654.
    41. 41)
      • 37. Bao, C., Ruan, X., Wang, X., et al: ‘Step-by-step controller design for LCL-type grid-connected inverter with capacitor–current-feedback active-damping’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12391253.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2019.0782
Loading

Related content

content/journals/10.1049/iet-rpg.2019.0782
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address